首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2014,25(2):756-763
The Variscan suture exposed in NW Iberia contains a stack of terranes including two allochthonous units with continental affinity and Gondwanan provenance (Upper and Basal Units), separated by an ophiolite belt where the most common units show protolith ages at c. 395 Ma. Recent Lu–Hf zircon data obtained from these ophiolites indicate interaction between the gabbroic magmas and old continental crust. Hence, the ophiolites could not have originated in a deep ocean basin associated with a mature mid-ocean-ridge or intraoceanic subduction. The tectonothermal evolution of the continental terranes bounding the suture zone records two consecutive events of deep subduction. The Upper Units record an initial high-P/ultra-high-P metamorphic event that occurred before 400–390 Ma, while the Basal Units were affected by a second high-P/low-to-intermediate-T metamorphic event dated at c. 370 Ma. Continental subduction affected the most external margin of Gondwana and developed in a setting of dextral convergence with Laurussia. Development of the two high-P events alternated with the opening of an ephemeral oceanic basin, probably of pull-apart type, in Early Devonian times. This ephemeral oceanic domain is suggested as the setting for the protoliths of the most common ophiolites involved in the Variscan suture. Current ideas for the assembly of Pangea advocate a single collisional event between Gondwana and Laurussia in the Carboniferous. However, the new evidence from the allochthonous terranes of the Variscan belt suggests a more complex scenario for the assembly of the supercontinent, with an interaction between the colliding continental margins that started earlier and lasted longer than previously considered. Based on modern analogs of continental interaction, the development of complex collisions, as here suggested for Gondwana and Laurussia during the assembly of Pangea, could have been the norm rather than the exception throughout Earth history.  相似文献   

2.
In the Central Dinarides and South Tisia different Paleozoic complexes occur in four geotectonic zones: (1) comparatively autochthonous units located in the cores of disrupted anticlines of the External Dinarides; (2) allochthonous disrupted units accompanied by more predominant Triassic formations in the Sava Nappe, which is thrust onto the northeastern margin of the External Dinarides; (3) allochthonous disrupted units, also together with Triassic formations, in the Pannonian and Durmitor nappes of the Internal Dinarides; and (4) polymetamorphic sequences in basement of the Pannonian Basin and South Tisia, respectively. This paper presents basic geological features for the main Paleozoic areas included in these four zones. The tectonostratigraphic units of the first two zones were related to the Gondwana passive continental margin, those of the third zone to the Paleotethyan oceanic realm, and those of Tisia to the active Laurussia margin. Geodynamic evolution of all these Paleozoic complexes was related to opening and closure of the Rheic and Paleotethys Oceans. Rifting processes along North Gondwana started in the Silurian, locally in the Cambrian-Ordovician, and were followed by the Late Silurian/Devonian opening of the Paleotethys. Subduction processes were active by the end of the Devonian and at the beginning of the Carboniferous along the Laurussia margin. They were followed during the Westphalian by main Variscan deformation during collision of Gondwana and Laurussia. Associated metamorphism was very low-grade in the Paleozoic units of the Sava Nappe, low-grade to epidote-amphibolite grade within the Paleozoic complexes of the Pannonian and Durmitor nappes in the Internal Dinarides, and poly-metamorphic with migmatites and granitoids in South Tisia. These processes gave rise to a Pangea stage with the Variscan basement disconformably overlain by Late Carboniferous and Permian sediments.  相似文献   

3.
Ophiolites of different Paleozoic ages occur in North-West (NW) Iberia in a rootless suture representing the remnants of the Rheic Ocean. Associated allochthonous terranes in the hanging- and foot-walls of the suture derive from the former margins, whereas the relative autochthon corresponds to the Paleozoic passive margin of northern Gondwana. The Paleozoic tectonic evolution of this part of the circum-Atlantic region is deduced from the stratigraphical, petrological, structural and metamorphic evolution of the different units and their ages. The tectonic reconstruction covers from Cambro-Ordovician continental rifting and the opening of the Rheic Ocean to its Middle to Upper Devonian closure. Then, the Variscan Laurussia–Gondwana convergence and collision is briefly described, from its onset to the late stages of collapse associated with the demise of the orogenic roots.  相似文献   

4.
中国大地构造特征的新研究   总被引:2,自引:0,他引:2  
<正> 1945年以来,著者和他的同事们发表了一系列书刊和论文,阐述中国大地构造演化,探讨中国大地构造的某些突出特点。近年来,随着新资料的迅速积累和受到板块构造学说的启发,著者认为有必要重新考虑一些旧的结论,并对同一课题提出新的观点。由于篇幅限制,在此只能简而叙之。  相似文献   

5.
New U–Pb zircon data of a mylonitic greenschist from the Moeche Ophiolite, one of the mafic units involved in the Variscan suture in the Cabo Ortegal Complex (NW of the Iberian Massif), yielded an age of 400 ± 3 Ma. Consequently, this unit can be considered one of the Devonian ophiolites, the most extended group of oceanic units in the Variscan belt. The mafic rocks show transitional compositions between N-MORB and island-arc tholeiites, although Lu–Hf isotope signatures of its zircons clearly indicate contribution from an old continental source. εHf values in the analysed zircons are negative (generally below εHf = ?5), and thence, they are not compatible with their generation from a juvenile mantle source. Accordingly, the igneous protoliths were generated in a setting where juvenile mafic magmas interacted with an old continental crust. The Devonian ophiolites from the Variscan suture have been repeatedly interpreted as remnants of the Rheic Ocean. However, the presence of a continental source in the origin of the mafic rocks of the Moeche Ophiolite allows discarding an intraoceanic setting for their generation, at least for the NW Iberian counterparts. The tectonic setting for the Devonian ophiolites of NW Iberia is very likely represented by an ephemeral oceanic basin opened within a continental realm. Herein, the real Rheic Ocean suture could only be located west of the terrane represented by the upper units of the allochthonous complexes. Apparently that suture is not represented in NW Iberia.  相似文献   

6.
雪峰山陆内造山带的构造特征与演化   总被引:47,自引:2,他引:47  
在对雪峰山的地质构造及其演化作了研究,并和阿尔卑斯式、阿巴拉契亚式的造山带和远程推覆体作了对比研究以后,作者认为:雪峰山地区的地质构造以具有多期,多层次的层滑构造为主要特色。其主要特征表现为在垂向剖面上有着多个区域性滑脱层,发育株罗山式褐挣矣逆冲叠瓦推覆构造,但它不是阿巴拉契式远程异地推覆体而是准原地型的。逆掩推覆虽然使原来沉积相带变窄,但并未破坏原来扬子地块东南边缘自北西向南东的由台地相--斜坡相--深水盆地相的沉积古地理格局,它是陆内造山带常见的构造样式,是在陆内裂陷的背景上由于裂谷关闭时陆块拼贴碰撞(即所谓软碰撞)和陆内俯冲产生的。雪峰山地区也发育伸展剥离和滑覆构造,伴随每一次挤压造山、地壳加厚的过程,在后造山期,也有地壳的隆升、地壳的拉伸和厚度减薄,它是深部岩石圈拆沉作用在地壳中的表现。  相似文献   

7.
The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.  相似文献   

8.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

9.
内蒙古苏尼特左旗交其尔推覆构造带的发现及其地质意义   总被引:5,自引:0,他引:5  
张维杰  李述靖 《现代地质》1995,9(2):220-225,T001
内蒙古苏尼特左旗中部交其尔一带发现一条近EW向延伸的推覆构造带。上元古界-下古生界浅变质岩以低角度向北推覆于晚古生代花岗岩基之上.推覆构造上盘的浅变质岩中发育有一套轴面向南倾的同斜倒转褶皱系,并伴有一系列向南倾的叠瓦状逆冲断面。下盘花岗岩中发育有较宽的糜棱岩带.沿推覆构造带分布有一系列的飞来峰及构造窗。这一构造带的发现,为纬向构造带的存在提供了有力证据,并显示了晚古生代末期以来地壳沿经线方向的强烈缩短。  相似文献   

10.
The allochthonous Cabo Ortegal Complex (NW Iberian Massif) contains a ~500 m thick serpentinite‐matrix mélange located in the lowest structural position, the Somozas Mélange. The mélange occurs at the leading edge of a thick nappe pile constituted by a variety of terranes transported to the East (present‐day coordinates; NW Iberian allochthonous complexes), with continental and oceanic affinities, and represents a Variscan suture. Among other types of metaigneous (calcalkaline suite dated at 527–499 Ma) and metasedimentary blocks, it contains close‐packed pillow‐lavas and broken pillow‐breccias with a metahyaloclastitic matrix formed by muscovite–paragonite–margarite–garnet–chlorite–kyanite–hematite–epidote–quartz–rutile. Pseudosection modelling in the MnCNTKFMASHO system indicates metamorphic peak conditions of ~17.5–18 kbar and ~550 °C followed by near‐isothermal decompression. This P–T evolution indicates subduction/accretion of an arc‐derived section of peri‐Gondwanan transitional crust. Subduction below the Variscan orogenic wedge evolved to continental collision with important dextral component. Closure of the remaining oceanic peri‐Gondwanan domain and associated release of fluid led to hydration of the overlying mantle wedge and the formation of a low‐viscosity subduction channel, where return flow formed the mélange. The submarine metavolcanic rocks were deformed and detached from the subducting transitional crust and eventually incorporated into the subduction channel, where they experienced fast exhumation. Due to the cryptic nature of the high‐P metamorphism preserved in its tectonic blocks, the significance of the Somozas Mélange had remained elusive, but it is made clear here for the first time as an important tectonic boundary within the Variscan Orogen formed during the late stages of the continental convergence leading to the assembly of Pangea.  相似文献   

11.
Thermal modeling techniques constrained by published petrological and thermo-chronometric data were applied to examine late orogenic burial and exhumation at a Variscan suture zone in Central Europe. The suture separates the southern Rhenohercynian zone from the Mid-German Crystalline Rise and traces the former site of a small oceanic basin. Closure of this basin during Variscan subduction and subsequent collision of continental units were responsible for different tectono-metamorphic evolutions in the suture's footwall and hanging wall. Relative convergence rates between the southern Rhenohercynian zone and western Mid-German Crystalline Rise can be inferred from the pressure-temperature-time evolution of the Northern Phyllite Zone. During Late Viséan-Early Namurian times, horizontal thrusting velocities were at least 20 mm/a. Thermal modeling suggests that exhumation of the Mid-German Crystalline Rise occurred temporarily at rates of more than 3 mm/a. Such rapid exhumation cannot be produced by erosion only, but requires a substantial contribution of extensional strain. Exhumation by upper crustal extension occurred contemporaneously with convergence and is explained by continuous underplating of crustal slices and thrusting along faults with ramp-flat geometry. Finally, implications for the tectono-metamorphic history of the study area and the thermal state of the crust during late Variscan exhumation are discussed.  相似文献   

12.
The Armorican Massif (western France) provides an excellent record of the Palaeozoic history of the Variscan belt. Following the Late Neoproterozoic Cadomian orogeny, the Cambro-Ordovician rifting was associated with oceanic spreading. The Central- and North-Amorican domains (which together constitute the core of the Armorica microplate) are bounded by two composite suture zones. To the north, the Léon domain (correlated with the “Normannian High” and the “Mid-German Crystalline Rise” in the Saxo-Thuringian Zone) records the development of a nappe stack along the northern suture zone, and was backthrusted over the central-Armorican domain during the Carboniferous. To the south, an intermediate block (“Upper Allochthon”) records a complex, polyorogenic history, with an early high-temperature event followed by the first generation of eclogites (Essarts). This intermediate block overthrusts to the north the Armorica microplate (Saint-Georges-sur-Loire), to the south: (i) relics of an oceanic domain; and (ii) the Gondwana palaeomargin. The collision occurred during a Late Devonian event, associated with a second generation of eclogites (Cellier).  相似文献   

13.
普遍认为冈瓦纳大陆北缘裂解发生在泥盆纪,形成了古特提斯洋并持续演化到晚三叠世.最近在羌塘中部的桃形湖一果干加年山-带发现了完整的蛇绿岩组合,蛇绿岩中的堆晶辉长岩具有洋中脊玄武岩的地球化学特征,在堆晶辉长岩中获得467-431Ma的锆石SHRIMP U-pb年龄,这是龙木错-双湖缝合带首次发现早古生代蛇绿岩,应记录了冈瓦纳北缘早期的洋壳演化信息,冈瓦纳大陆北缘的裂解可能发生于早古生代.  相似文献   

14.
The Guarguardz Complex, basement of the Cordillera Frontal, included in the proposed Chilenia Terrane, consists of metasedimentary rocks deposited in clastic and carbonatic platforms. Turbiditic sequences point out to slope or external platform environments. According to geochemical data, the sedimentary protoliths derived through erosion of a mature cratonic continental basement. Volcanic and subvolcanic rocks with N and E-MORB signature were interbeded in the metasedimentary rocks during basin development. A compressional stage, starting with progressive deformation and metamorphism, followed this extensional stage. Continuing deformation led to the emplacement of slices of oceanic crust, conforming an accretionary prism during Late Devonian. The Guarguardz Complex and equivalent units in western Precordillera and also in the Chilean Coastal Cordillera share common evolutional stages, widely represented along the western Gondwana margin. These evidences imply that Chilenia is not an allochthonous terrane to Gondwana, but a portion of its Early Paleozoic margin. Regional configuration indicates that the Guarguardz Complex and equivalent units represent the accretionary prism of the Famatinian arc (Middle Ordovician-Late Devonian).  相似文献   

15.
冈瓦纳大陆北缘裂解普遍认为发生在泥盆纪,形成了古特提斯洋并持续演化到晚三叠世。最近在羌塘中部的桃形湖—果干加年山一带发现了完整的蛇绿岩组合,蛇绿岩中的堆晶辉长岩具有洋中脊玄武岩的地球化学特征,在堆晶辉长岩中获得467 Ma~431Ma的锆石SHRIMP U-Pb年龄,这是龙木错-双湖缝合带首次发现早古生代蛇绿岩,应记录了冈瓦纳北缘早期的洋壳演化信息,冈瓦纳大陆北缘的裂解可能发生于早古生代。  相似文献   

16.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

17.
The Cheb Basin (CHB), located in the western part of the Eger Rift (ER) and the western Bohemian Massif, is characterized by earthquake swarms, neotectonic crust movements and emanations of CO2 dominated gases of mantle origin. Deep structure of the region can be characterized as junction of three domains of mantle lithosphere with different olivine fabrics revealed by consistent orientations of seismic anisotropy. The domains represent mantle components of the major tectonic units (micro-plates): Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD), which were assembled during the Variscan orogeny. The ST-TB boundary, reactivated during the Cenozoic extension, controlled the position and development of the ER and the CHB. We show that the CHB originated above the rejuvenated mantle suture between the ST and TB. Though the basin is located within the ST crust domain, which is thrust over the mantle junction, it is the mantle suture that controls the CHB shape and its development through the allochthonous ST crust. The seismically active Mariánské Lázně Fault limits the basin against the uplifted block of the Erzgebirge Crystalline Complex. The most subsided parts of the ER and CHB developed above the centre of the mantle transition, whereas a well expressed morphology developed above its flanks. Our study documents a long memory of the mantle lithosphere assembly inherited from the Variscan orogeny. It is possible that other continental regions also contain some of intra-plate basins that originated above healed palaeo-plate mantle boundaries.  相似文献   

18.
The structure and tectonics of the Aga Zone are considered. It is shown that this zone is a system of tectonic nappes thrust over the Argun microcontinent. The zone is composed of two rock complexes related to the Variscan and Kimmerian structural stages. The Variscan stage (Silurian(?)-Early Carboniferous) comprises structural elements that correspond to the continental slope; the oceanic basin proper; the active continental margin, including an accretionary wedge; and an island arc and backarc basin. The Devonian age of the ophiolites of the Shilka Belt is specified. The formation of this set of tectonic units is related to the Middle Paleozoic pulse of the opening of the Mongolia-Okhotsk paleobasin. The Kimmerian stage (Middle Carboniferous-Early Jurassic) is characterized by a different style of structural evolution. A system of separate troughs filled with flyschoid sequences was formed on the Variscan basement. The unstable setting related to shortening and closure of the paleobasin brought about the spatial migration of sedimentation zones and the development of intraformational breaks in sedimentation, as well as unconformities. This stage was completed in the Lias by the general uplift of the territory and the formation of Jurassic and Cretaceous mollase along its periphery. The Aga allochthonous mass was ultimately formed in the Middle Jurassic. This event is recorded in emplacement of Middle-Late Jurassic granitic plutons that blocked the nappes. The granitic-metamorphic layer was formed in the Paleozoic and Early Mesozoic at the margin of the Aga Zone upon its conjugation with the adjacent continental masses; this layer is related to crustal anatexis. The bulk of the granitic rocks of the Aga Zone were generated in the Middle and Late Jurassic due to the collision of the North Asian continent with the Argun microcontinent.  相似文献   

19.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   

20.
The paper reviews geological, geochronological and geochemical data from the Late Paleozoic – Mesozoic magmatic complexes of the Siberian continent north of the Mongol-Okhotsk suture. These data imply that these complexes are related to the subduction of the Mongol-Okhotsk Ocean under the Siberian continent. We suggest that this subduction started in the Devonian, prior to the peak of magmatic activity. Studied magmatic complexes are of variable compositions possibly controlled by changes of the subduction regime and by possible input from enriched mantle sources (hot spots).The oceanic lithosphere of the Mongol-Okhotsk Ocean had shallowly subducted under the Siberian continent in the Devonian. Steeper subduction in the Early – Late Carboniferous led to switching from an extensional to compressional tectonic regime resulting in fold-thrust deformation, to the development of duplex structures and finally to the thickening of the continental crust. This stage was marked by emplacement of voluminous autochthonous biotite granites of the Angara-Vitim batholith into the thickened crust. The igneous activity in the Late Carboniferous – Early Permian was controlled by the destruction of the subducted slab. The allochthonous granitoids of the Angara-Vitim batholith, and the alkaline granitoids and volcanics of the Western Transbaikalian belt were formed at this stage. All these complexes are indicative of extension of the thickened continental crust. A normal-angle subduction in the Late Permian – Late Triassic caused emplacement of various types of intrusions and volcanism. The calc-alkaline granitoids of the Late Permian – Middle Triassic Khangay batholith and Late Triassic Khentey batholith were intruded near the Mongol-Okhotsk suture, whereas alkaline granitoids and bimodal lavas were formed in the hinterland above the broken slab. The Jurassic is characterized by a significant decrease of magmatic activity, probably related to the end of Mongol-Okhotsk subduction beneath the studied area.The spatial relationship of the Late Permian – Middle Triassic granitoids, and the Late Triassic granitoids is typical for an active continental margin developing above a subduction zone. All the Late Carboniferous to Late Jurassic mafic rocks are geochemically similar to subduction-related basalts. They are depleted in Nb, Ta, Ti and enriched in Sr, Ba, Pb. However, the basaltoids located farther from the Mongol-Okhotsk suture are geochemically similar to a transition type between island-arc basalts and within-plate basalts. Such chemical characteristics might be caused by input of hot spot related enriched mantle to the lithospheric mantle modified by subduction. The Early Permian and Late Triassic alkaline granitoids of southern Siberia are of the A2-type geochemical affinities, which is also typical of active continental margins. Only the basaltoids generated at the end of Early Cretaceous are geochemically similar to typical within-plate basalts, reflecting the final closure of the Mongol-Okhotsk Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号