首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. Multiparameter inversions of multimode dispersion data are performed for two large regions: the Pacific Ocean and North America. Anisotropy is taken into account by considering transversely isotropic structures with a vertical axis of symmetry. Two fundamental questions are studied in detail: (1) how to make the inverted models consistent when using different sets of parameters, (2) what is the significance of transversely isotropic inversion for the actual Earth's structure? It is proved that full consistency of the inverted models can be achieved by properly taking into account some a priori informations on the model and it is shown that the use of transversely isotropic models with vertical axis of symmetry does not cause severe limitations when interpreting the data. The models we have obtained are discussed in the light of these investigations. Considering an olivine-rich upper mantle, we make a tentative interpretation of these models in terms of preferred orientation of the a -axis of the crystals in one fixed horizontal direction.  相似文献   

2.
We systematically analysed shear wave splitting (SWS) for seismic data observed at a temporary array and two permanent networks around the San Andreas Fault (SAF) Observatory at Depth. The purpose was to investigate the spatial distribution of crustal shear wave anisotropy around the SAF in this segment and its temporal behaviour in relation to the occurrence of the 2004 Parkfield M 6.0 earthquake. The dense coverage of the networks, the accurate locations of earthquakes and the high-resolution velocity model provide a unique opportunity to investigate anisotropy in detail around the SAF zone. The results show that the primary fast polarization directions (PDs) in the region including the SAF zone and the northeast side of the fault are NW–SE, nearly parallel or subparallel to the SAF strike. Some measurements on the southwest side of the fault are oriented to the NNE–SSW direction, approximately parallel to the direction of local maximum horizontal compressive stress. There are also a few areas in which the observed fast PDs do not fit into this general pattern. The strong spatial variations in both the measured fast PDs and time delays reveal the extreme complexity of shear wave anisotropy in the area. The top 2–3 km of the crust appears to contribute the most to the observed time delays; however substantial anisotropy could extend to as deep as 7–8 km in the region. The average time delay in the region is about 0.06 s. We also analysed temporal patterns of SWS parameters in a nearly 4-yr period around the 2004 Parkfield main shock based on similar events. The results show that there are no appreciable precursory, coseismic, or post-seismic temporal changes of SWS in a region near the rupture of an M 6.0 earthquake, about 15 km away from its epicentre.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The presence of anisotropy requires that tomographic methods be generalized to account for anisotropy. This generalization allows geological structure to be correctly imaged and allows the anisotropic parameters to be estimated. Use of isotropic inversion for imaging anisotropic structures gives systematic trends in the traveltime and polarization residuals. However, due to the limited directional coverage, the traveltimes along may not be sufficient to study the anisotropic properties of the structure. Polarizations can provide independent information on the structure. Traveltime and polarization inversion are applied to synthetic examples simulating VSP experiments. Transverse isotropy and 1-D structure are assumed. Plots of traveltime and polarization residuals are an important tool to detect the anomalies due to the presence of anisotropy. For receivers located in anisotropic layers, polarization residuals display consistent anomalies of several degrees. The synthetic examples show that even the simple 1-D problem is difficult, when using direct arrivals only. Large a posteriori errors in anisotropic parameters are obtained by traveltime inversion in layers where available incidence angles are less than 45°. Resolution of the tomographic image of VSP data is greatly improved by a combination of traveltime and polarization information. In order to obtain accurate inversion results, the measurement error of polarization data should be kept to within a few degrees.  相似文献   

12.
The ray path of a P -wave is specified in terms of the ray parameter and three Euler angles. the P -wave traveltime depends only on the ray parameter for a spherically symmetric earth. If we introduce an aspherical perturbation, including general ani-sotropy, the dependence on Euler angles can be expanded in terms of the rotation matrix for a fixed ray parameter. If the perturbation is isotropic, the expansion coefficients satisfy certain relations which may be used to obtain definite evidence for anisotropy rather than isotropic lateral heterogeneity.  相似文献   

13.
14.
15.
16.
Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ∼ 1000–2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ∼ 1500 km beneath the Iceland–Faeroe ridge with a maximum diameter of ∼250 km and a maximum wave-speed contrast of ∼ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ∼ 500 km and a wave-speed anomaly of ∼ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.  相似文献   

17.
18.
19.
Summary. Teleseismic P -wave residuals relative to CWF, a permanent shortperiod seismic station on Charnwood Forest in the Central Midlands of England, have been determined for two small aperture arrays deployed over the Precambrian block of Charnwood and its surrounding Phanerozoic sediments. The data have been inverted to produce a block model of the P -wave velocity variations in the crust and upper mantle beneath the study region. The results are consistent with significant variations penetrating to a depth of at least 50 km. Low velocities are associated with two upper crustal intrusive bodies, the Caledonian Mountsorrel granodiorite and the South Leicestershire diorites. A longer-wavelength variation at lower crustal/upper mantle depths could arise from the Moho dipping to the south-west beneath the study region, and whose strike sub-parallels the dominant Charnian trend of the major basement structures in this part of Central England.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号