首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   

2.
Simulations of the erosion, transport and deposition of fine-grained sediment, such as that of Greenberg & Amos and the Hydraulics Research Station, have illustrated a general lack of reliable field data. Consequently, some standard equations and constants used in modelling the sedimentation character of fine-grained cohesive sediment were evaluated based on data from two field studies and a flume experiment with undisturbed sediment from the Bay of Fundy. Initial results showed that the resistance to erosion of intertidal fine-grained sediment is controlled largely by the degree of subaerial exposure and the consequent dehydration and compaction. The sediment shear strength was high (4 kPa), but generally decreased seawards across the intertidal zone. The resistance of intertidal mud to erosion can be 80 times greater than sub-tidal counterparts. The rate of sediment erosion varied as a complex function of the applied bottom shear stress. At stresses immediately above the critical, the erosion rate decreased asymptotically with time. At higher excess stresses, the erosion rate was linear with respect to time. Thus sediment erosion cannot be represented by a single coefficient. The Krone method of computing sedimentation rates of suspended material was shown, by comparisons with direct measurement, to overpredict by 29%. All variables used in his method were measured in the evaluation with the exception of the critical deposition stress (τd). The closest comparisons were obtained when τd was assigned a value of 0.1 N m?2 following Creutzberg & Postma. The in situ still-water particle settling rate (Vo) was constant with respect to time (2.1 × 10?3 m s?1). However, the settling tube measures of settling rate, compared to in situ results, underpredicted particle settling by an order of magnitude (2.7 × 10?4 m s?1). The reason for this discrepancy is not apparent from our results.  相似文献   

3.
Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north‐west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations. This article provides an extensive view of the erosional and depositional behaviour of calcareous nannofossil ooze based on experimental work using annular flumes. A fundamental observation of this study is the significant decrease of nannofossil ooze mobility with decreasing bed porosity. Erosion characteristics, labelled as erosion types, vary with total bed porosity (φ) and applied shear stress (τ0). High‐porosity ooze (φ >80%) is characterized by constant erosion rates (Em). At φ <77%, however, erosion characteristics showed greater variance. Surface erosion was typically followed by transitional erosion (with asymptotically decreasing Em), and stages of erosion with constant, and exponential erosion rates. The estimated erosion thresholds (τc) vary from ca 0·05 to 0·08 Pa for the onset of surface erosion and up to ca 0·19 Pa for the onset of constant erosion (φ of 60 to 85%). Variability of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded aggregates whose size correlates with bed porosity. Lastly, slow sediment transport without resuspension occurred in high‐porosity ooze as surface creep, forming low‐relief sedimentary features resembling ripples. This process represents a previously undescribed mode of fine‐grained nannofossil ooze transport.  相似文献   

4.
Aeolian sand and dust in polar regions are transported offshore over sea ice and released to the ocean during summer melt. This process has long been considered an important contributor to polar sea floor sedimentation and as a source of bioavailable iron that triggers vast phytoplankton blooms. Reported here are aeolian sediment dispersal patterns and accumulation rates varying between 0·2 g m?2 yr?1 and 55 g m?2 yr?1 over 3000 km2 of sea ice in McMurdo Sound, south‐west Ross Sea, adjacent to the largest ice free area in Antarctica. Sediment distribution and the abundance of southern McMurdo Volcanic Group‐derived glass, show that most sediment originates from the McMurdo Ice Shelf and nearby coastal outcrops. Almost no sediment is derived from the extensive ice free areas of the McMurdo Dry Valleys due to winnowed surficial layers shielding sand‐sized and silt‐sized material from wind erosion and because of the imposing topographic barrier of the north‐south aligned piedmont glaciers. Southerly winds of intermediate strength (ca 20 m sec?1) are primarily responsible for transporting sediment northwards and offshore. The results presented here indicate that sand‐sized sediment does not travel more than ca 5 km offshore, but very‐fine sand and silt grains can travel >100 km from source. For sites >10 km from the coast, the mass accumulation rate is relatively uniform (1·14 ± 0·57 g m?2 yr?1), three orders of magnitude above estimated global atmospheric dust values for the region. This uniformity represents a sea floor sedimentation rate of only 0·2 cm kyr?1, well below the rates of >9 cm kyr?1 reported for biogenic‐dominated sedimentation measured over much of the Ross Sea. These results show that, even for this region of high‐windblown sediment flux, aeolian processes are only a minor contributor to sea floor sedimentation, excepting areas proximal to coastal sources.  相似文献   

5.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

6.
Evolution and mechanics of a Miocene tidal sandwave   总被引:3,自引:0,他引:3  
A remarkable exposure of Miocene marine molasse in western Switzerland records the evolution of a tidal sandwave over a period of approximately 2 1/2 months. The sandwave is composed of tidal ‘bundles’ in which a sandwave reactivation stage and full vortex stage can be recognized for the dominant flow (ebb tide) and a rippled flood apron overlain by high water drape for the reversed flow. Bundle thicknesses vary systematically through neap–spring cycles, with a periodicity of 27 demonstrating the semi-diurnal lunar control of sedimentation. Waves were an additional component, especially when superimposed on flood tides, producing near-symmetrical combined-flow ripple marks in the flood apron. Tidal current velocities are estimated using critical shear velocities for entrainment, the ripple-dune transition and the dune-plane bed transition. Using appropriate estimates of roughness lengths and a logarithmic velocity law, maximum tidal speeds at 1 m above the bed were approximately 0·6 m sec?1 for ebbs and up to 0·5 m sec?1 for floods. The enhancement by waves of bed shear stress (τwc/τ of approximately 2 for 1 m high waves) under flood currents implies flood tidal velocities closer to 0·2–0·3 m sec?1. Peak instantaneous bedload sediment transport rates using a modified Bagnold equation are nearly 5 times greater under ebb tides than floods. The average net sediment transport rate at springs (0·04 kg m?1 sec?1) is over 10 times greater than at neaps (0·002 kg m?1 sec?1). Comparison with transport rates in modern tidal environments suggests that the marine molasse of Switzerland was deposited under spatially confined and relatively swift tidal flows not dissimilar to those of the present Dutch tidal estuaries.  相似文献   

7.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

8.
ABSTRACT High resolution seismic profiles, supported where possible by radiocarbon dates and regional stratigraphic data, indicate that the last post-glacial transgression in the SW Pacific was episodic, comprising major stillstands punctuated by rapid rises in sea-level. On the terrigenous continental shelf east of South Island, New Zealand, a succession of shorelines (S8-S1) are recognized, as follows: S8 =c. ?113 m, 18,000 yr BP; S7 =c. ?88 m, 17,000 yr BP; S6 =c. ?75 m, 15,000 yr BP; S5 =c. ?56 m, 12,000 yr BP; S4 =c. ?46 m, 11,000 yr BP; S3 =c. ?28 m, 9,500 yr BP; S3a =c. ?24 m, 9,000 yr BP; S2 =c. ?9 m, 7,500 yr BP; S1 = 0 m, 6,500 yr BP. With the exception of S8, and possibly S2, the shorelines are associated with wedges of sediment, the size and presence of which imply that (1) sea-level stabilized at some shorelines for a considerable period of time (up to 1-2,000 yr); and (2) the intervening rises of sea-level, estimated to have been at least 10-12 m 103 yr?1, were too rapid to allow the reworking of the wedges into a transgressive sediment sheet, as favoured in some current models. On the Great Barrier Reef shelf, off Queensland Australia, shorelines S8-S1 have also been recognized, with a further shoreline feature S4a occurring at c. -39 m. Shorelines S1a (0 m/0 yr BP), Sib (+ 2-3 m/6,000 yr BP) and Sic (0 m/6,500yr BP) are recognized as discrete aspects of the post-6,500 yr BP sea-level behaviour in north-eastern Australia. The rapid rise in sea-level, at least between shorelines S5 (12,000 yr BP) and S3 (9,500 yr Bp), is known to have outpaced reef growth, causing in situ drowning of reefs located along the deeper shorelines. All modern reefs so far drilled and dated began their development at or above S3 (-28 m, 9,500 yr BP). Some of the shorelines, particularly S5, appear to correlate between the northern and southern hemispheres on the basis of age, succession and general depth of occurrence, suggesting (1) that they may be global features controlled by the post-glacial pattern of ice-sheet decay; and (2) that hydro-isostatic adjustment may exert only a minor control on the depth of particular shorelines, at least during the earlier parts of the post-glacial transgression.  相似文献   

9.
A major re‐organization of regional drainages in eastern Tibet and south‐western China took place in the Cenozoic as deformation from the growing Himalayas and Tibetan Plateau affected an increasingly wider area. The effects of these changes on the regional sediment routing systems is not well constrained. This study examines the geochemical and Nd signatures of sedimentary rocks from the Ying‐Qiong and Nanxiong basins on the northern margin of the South China Sea to constrain and identify any significant changes in sediment source. Upper Cretaceous to Lower Eocene sedimentary rocks in the Nanxiong Basin show higher Th/Sc, La/Sc, Th/Cr and Th/Co ratios and lower Eu/Eu* ratios than PAAS (post‐Archaean Australian Shale), which indicates that Palaeozoic sedimentary rocks of the South China Block were the main basin sediment source. In contrast, Oligocene to Pleistocene sedimentary rocks of the Ying‐Qiong Basin show an abrupt change in these trace‐element ratios between 16·3 and 10·4 Ma, indicating a mid‐Miocene shift in provenance. ɛNd values from the Ying‐Qiong Basin (range = −11·1 to −2·1) reinforce this, with pre‐13·8 Ma sedimentary rocks having average ɛNd of −5·6 (range = −2·1 to −7·4), and post‐13·8 Ma sedimentary rocks having average ɛNd of −9·3 (range = −8·7 to −11·1). During the Oligocene, the centre of rifting transferred south and basins on the north margin of the South China Sea experienced rapid subsidence. Further uplift and erosion then exposed Mesozoic and Cenozoic granites that supplied large amounts of granitic detritus, especially to the Ying‐Qiong Basin. Then a change occurred at ca 13 Ma resulting in less input from local sources (i.e. the fault blocks formed by Mesozoic‐Cenozoic tectonics and magmatism) to an increasing contribution of older continental material, mostly from Indochina to the west of the South China Sea.  相似文献   

10.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   

11.
A laboratory flume experiment was carried out in which the hydrodynamic and sedimentary behaviour of a turbidity current was measured as it passed through an array of vertical rigid cylinders. The cylinders were intended primarily to simulate aquatic vegetation canopies, but could equally be taken to represent other arrays of obstacles, for example forests or offshore wind turbines. The turbidity currents were generated by mixing naturally sourced, poly‐disperse sediment into a reservoir of water at concentrations from 1·0 to 10·0 g l?1, which was then released into the experimental section of the flume by removing a lock gate. For each initial sediment concentration, runs with obstacle arrays with solid plant fractions of 1·0% and 2·5%, and control cases with no obstacles, were carried out. The progress of the current along the flume was characterized by the array drag term, CDaxc (where CD is the array drag coefficient, at the frontal area of cylinders per unit volume, and xc is the position of the leading edge of the current along the flume). The downward depositional flux of sediment out of the current as it proceeded was measured at 13 traps along the flume. Analysis of these deposits divided them into fine (2·2 to 6·2 μm) and coarse (6·2 to 104 μm) fractions. At the beginning of their development, the gravity currents proceeded in an inertia‐dominated regime until CDaxc = 5. For CDax> 5, the current transitioned into a drag‐dominated regime. For both fine and coarse sediment fractions, the rate of sediment deposition tended to decrease gradually with distance from the source in the inertial regime, remained approximately constant at the early drag‐dominated regime, and then rose and peaked at the end of the drag‐dominated stage. This implies that, when passing through arrays of obstacles, the turbidity currents were able to retain sufficient sediment in suspension to maintain their flow until they became significantly influenced by the drag exerted by the obstacles.  相似文献   

12.
本文报道了天然Ⅱ型CaCO3 矿物。该矿物发现于海洋表层沉积物,成分与方解石、文石及六方球方解石相同,但结构完全不同,它们共同组成了天然CaCO3 的同质多象变体。天然Ⅱ型CaCO3 矿物的空间群为P21/c,单位轴长为a0= 0.6290±0.0002 nm,b0= 0.4934±0.0002 nm,c0= 0.7979±0.0003nm,β= 107.571°±0.002°,Z= 4,单胞体积为0.23605±0.1749nm3;理论密度为2.82 g/cm3,实测值为2.76 g/cm3;实测硬度H= 4.天然Ⅱ型CaCO3 矿物是在深水环境中较高静水压力下形成的珊瑚体生物矿物。  相似文献   

13.
A 4·7 km2 field of sediment waves occurs in front of the Slims River delta in Kluane Lake, the largest lake in the Yukon Territory. Slims River heads in the Kaskawulsh Glacier, part of the St Elias Ice Field and discharges up to 400 m3 s?1 of water with suspended sediment concentrations of up to 7 g l?1. The 19 km long sandur of Slims River was created in the past 400 years since Kaskawulsh Glacier advanced and dammed the lake and the sandur has advanced into Kluane Lake at an average rate of 48 m a?1. However, this rate is decreasing as flow is diverted from Slims River because of the retreat of the Kaskawulsh Glacier. The sandur and a road constructed on the delta remove coarse‐grained sediment, so the river delivers dominantly mud to the lake. Inflow during summer generates quasi‐continuous turbidity currents with velocities up to 0·6 m s?1. The front of the delta consists of a plane surface sloping lakeward at 0·0188 (1·08°). A field of sediment waves averaging 130 m in length and 2·3 m in amplitude has developed on this surface. Slopes on the waves vary from ?0·067 (?3·83°, i.e. sloping in the opposite direction to the regional slope) to 0·135 (7·69°). The internal structure of the sediment waves, as documented by seismic profiling, shows that sedimentation on the stoss portion of the wave averages 2·7 times that on the lee portion. Rates of sediment accumulation in the wave field are about 0·3 m a?1, so these lacustrine waves have formed in a much shorter period of time (less than 200 years) and are advancing upslope towards the delta much more quickly (1 to 2 m a?1) than typical marine sediment waves. These waves formed on the flat surface of the lake floor, apparently in the absence of pre‐existing forms, and they are altered and destroyed as the wave field advances and the characteristics of the turbidity currents change.  相似文献   

14.
Carbonate minerals and water (or geofluids) reactions are important for modeling of geochemical processes and have received considerable attention over the past decades. The calcite dissolution rates from 50℃ to 250℃ at 10 MPa in deionized water with a flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. The dissolution began near the equilibrium with c/ceq 〉 0.3 and finally reached the equilibrium at 100℃-250℃, so the corresponding solubility was also determined as 1.87, 2.02, 2.02 and 1.88×10^-4.mol/L at 100℃, 150℃, 200℃ and 250℃ respectively, which was first increasing and then switching to decreasing with temperature and the maximum value might occur between 150℃ and 200℃. The experimental dissolution rate not only increased with temperature, but also had a rapid increase between 150℃ and 200℃ at a constant flow rate of 4 mL/min. The measured dissolution rates can be described using rate equations of R = k(1-c/ceq)n or R = kc-n. In these equations the reaction order n changed with temperature, which indicates that n was a variable rather than a constant, and the activation energy was 13.4 kJ/mol calculated with R = k(1-c/ceq)n or 18.0 kJ/mol with R = kc^-n, which is a little lower than the surface controlled values. The varied reaction order and lower activation energy indicates that calcite dissolution in this study is a complex interplay of diffusion controlled and surface controlled processes.  相似文献   

15.
This study addresses gaps in understanding the relative roles of sea‐level change, coastal geomorphology and sediment availability in driving beach erosion at the scale of individual beaches. Patterns of historical shoreline change are examined for spatial relationships to geomorphology and for temporal relationships to late‐Holocene and modern sea‐level change. The study area shoreline on the north‐east coast of Oahu, Hawaii, is characterized by a series of kilometre‐long beaches with repeated headland‐embayed morphology fronted by a carbonate fringing reef. The beaches are the seaward edge of a carbonate sand‐rich coastal strand plain, a common morphological setting in tectonically stable tropical island coasts. Multiple lines of geological evidence indicate that the strand plain prograded atop a fringing reef platform during a period of late‐Holocene sea‐level fall. Analysis of historical shoreline changes indicates an overall trend of erosion (shoreline recession) along headland sections of beach and an overall trend of stable to accreting beaches along adjoining embayed sections. Eighty‐eight per cent of headland beaches eroded over the past century at an average rate of ?0·12 ± 0·03 m yr?1. In contrast, 56% of embayed beaches accreted at an average rate of 0·04 ± 0·03 m yr?1. Given over a century of global (and local) sea‐level rise, the data indicate that embayed beaches are showing remarkable resiliency. The pattern of headland beach erosion and stable to accreting embayments suggests a shift from accretion to erosion particular to the headland beaches with the initiation of modern sea‐level rise. These results emphasize the need to account for localized variations in beach erosion related to geomorphology and alongshore sediment transport in attempting to forecast future shoreline change under increasing sea‐level rise.  相似文献   

16.
In situ carbon flux measurements and calculated burial rates are utilized to construct an organic carbon budget for the upper meter of sediment at a single station in Cape Lookout Bight, a small marine basin located on the Outer Banks of North Carolina, U.S.A. (34°37′N, 76°33′W). Of 149 ± 20 mole · m?2 · yr?1 of total organic carbon deposited, 35.6 ± 5.2 mole · m?2 · yr?1 is recycled to overlying waters, 84 ± 18% as ∑CO2 and 16 ± 8% as CH4. Approximately 68 ± 20% of the upward carbon flux is supported by sulfate reduction while 32 ± 16% takes place as the result of underlying methanogenesis. Measured ∑CO2 and CH4 sediment-water fluxes range seasonally from 1900–6300 and 50–2500 μmole · m?2 · hr?1 respectively.The mean residence time of metabolizable organic carbon in the upper 80 cm of sediment is approximately four months with greater than 98% of the calculated total remineralization taking place within three years. In spite of large upward fluxes of methane, larger molecules derived from metabolizable sedimentary organic carbon appear to be the dominant reductants for dissolved sulfate.  相似文献   

17.
The ability of mud aggregates to form depositional bedforms is of considerable sedimentological importance for explaining the geomorphology of the Channel Country of central Australia as well as for understanding the depositional environment of certain argillaceous fluvial sequences in the rock record. The sediment transport and bedform development of mud aggregates from the floodplain of Cooper Creek, central Australia, was examined in a laboratory flume over a range of flow conditions. The aggregates were found to be clay-rich (>60% clay), nonsaline (<0·02%), fine sand-sized (mean d50=0·13 mm), low density (2300 kg m?3) and water-stable. Three wetting rates were applied to the sediment in the laboratory prior to wet sieving to replicate various field conditions and results in three mean aggregate sizes. Immersion wetting (no tension) represents inundation of the sediment by overland flow and results in aggregates of 0·13 mm. Tension wetting at 20 and 50 mm corresponds to high- and low-intensity rainfall and results in mean d50 sizes of 0·75 and 0·70 mm, respectively. Immersion wetting is the most applicable wetting mode for hydraulic transport of aggregated sediment on the Cooper Creek floodplain. Considerable variability in sediment transport rates in the field could result from differences in pre-wetting of the aggregated sediment. The dominance of smectite in the clay mineralogy of the sediment is an important factor in the development of the aggregates; disaggregated sediment reaggregated in a laboratory after 2–3 wetting/drying cycles. In flume experiments, bedforms of aggregated mud ranging from lower-regime plane beds to upper-regime antidunes were observed. The aggregates moved predominantly as bedload with measured peak bedload concentrations being high compared with other flume studies. The highly mobile nature of this sediment in the field is due to the ready entrainment of low-density aggregates in the form of self-mulching vertisols across extensive floodplains. The occurrence of low-sinuosity braid-like channels on this extensive low-gradient semi-arid floodplain can be attributed to: (a) the passage of floodwaters across a floodplain with steeper gradients than adjacent more sinuous anastomosing channels; (b) the highly mobile nature of the low-density sediment aggregates; (c) the ability of the aggregates to be transported as bedload; and (d) their durable nature during transport.  相似文献   

18.
Throughout the last 1.1 million years repeated glaciations have modified the southern Fennoscandian landscape and the neighbouring continental shelf into their present form. The glacigenic erosion products derived from the Fennoscandian landmasses were transported to the northern North Sea and the SE Nordic Seas continental margin. The prominent sub‐marine Norwegian Channel trough, along the south coast of Norway, was the main transport route for the erosion products between 1.1 and 0.0 Ma. Most of these erosion products were deposited in the North Sea Fan, which reaches a maximum thickness of 1500 m and has nearly 40 000 km3 of sediments. About 90% of the North Sea Fan sediments have been deposited during the last 500 000 years, in a time period when fast‐moving ice streams occupied the Norwegian Channel during each glacial stage. Back‐stripping the sediment volumes in the northern North Sea and SE Nordic Seas sink areas, including the North Sea Fan, to their assumed Fennoscandian source area gives an average vertical erosion of 164 m for the 1.1–0.0 Ma time period. The average 1.1–0.0 Ma erosion rate in the Fennoscandian source area is estimated to be 0.15 mm a?1. We suggest, however, that large variations in erosion rates have existed through time and that the most intense Fennoscandian landscape denudation occurred during the time period of repeated shelf edge ice advances, namely from Marine Isotope Stage 12 (c. 0.5 Ma) onwards.  相似文献   

19.
The release of remineralized N and P from the organic-rich anoxic sediments of Cape Lookout Bight is controlled by processes occurring within the sediment column and at the sediment-water interface. The relatively rapid rates of temperature dependent microbial degradation of organic matter support seasonally varying nutrient fluxes ranging from 20 to 1200 μmol·m?2·hr?1 for dissolved ammonium and from ? 20 to 120 μmol·m?2·hr?1 for total dissolved phosphate (measured in situ over the period October, 1976 to October, 1978). Molecular diffusion along steep vertical pore water concentration gradients measured simultaneously cannot explain the high fluxes observed during warmer months. Gradients for ammonium and phosphate ranged from 0.33 to 1.10 and from 0 to 0.29 μmol·cm?3pw·cm?1s respectively. These high summertime fluxes appear to result from increased sediment-water transport associated with bubble tubes created and maintained by low-tide methane gas bubble ebullition. When these tubes are present, apparent bulk sediment diffusivities calculated from concurrent studies of methane and radon-222 sediment-water exchange are 1.0–3.1 times greater than molecular diffusivities. Nutrient fluxes calculated via Fick's first law taking into account this enhanced transport and the differential diffusive mobilities of dissolved ammonium, phosphate and phosphate ion pairs indicate that removal by aerobic adsorption and/or biological uptake at the sediment-water interface plays an important role in controlling nutrient exchange in these sediments.  相似文献   

20.
Observations of the threshold of movement of loosely packed gravel in a tidal current are described. For gravel with equivalent ‘spherical’ diameters D in the range 0.2 ?D? 5.0cm the critical friction velocity u*c, corresponding to the initiation of sediment transport, is given by u*c=7.0 D0.2. At large values of D within the quoted range, the value u*c is significantly lower than would be obtained by a Shields experiment (u*cD0.5). By comparing our values of u*c with those obtained under well-controlled laboratory conditions, the discrepancy with Shields is shown to be due to the open spacing between, and exposure of, individual pebbles on the seabed. By comparing our results with those from upland gravel streams and flume experiments, it is suggested that Shields assumed an excessively large water depth to particle size ratio as a constraint within which the critical sediment entrainment number 0c is valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号