首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Plant transpiration depends on environmental conditions, and soil water availability is its primary control under water deficit conditions. In this study, we improve a simplified process‐based model (hereafter “BTA”) by including soil water potential (ψsoil) to explicitly represent the dependence of plant transpiration on root‐zone moisture conditions. The improved model is denoted as the BTA‐ψ model. We assessed the performance of the BTA and BTA‐ψ models in a subtropical monsoon climate and a Mediterranean climate with different levels of water stress. The BTA model performed reasonably in estimating daily and hourly transpiration under sufficient water conditions, but it failed during dry periods. Overall, the BTA‐ψ model provided a significant improvement for estimating transpiration under a wide range of soil moisture conditions. Although both models could estimate transpiration (sap flow) at night, BTA‐ψ was superior to BTA in this regard. Species differences in the calibrated parameters of both models were consistent with leaf‐level photosynthetic measurements on each species, as expected given the physiological basis of these parameters. With a simplified representation of physiological regulation and reasonable performance across a range of soil moisture conditions, the BTA‐ψ model provides a useful alternative to purely empirical models for modelling transpiration.  相似文献   

3.
Forest transpiration models have been developed in different disciplines such as plant physiology, ecology, meteorology, hydrology and soil science. In the present study, three different types of model perspectives for transpiration control are used: leaf cooling, CO2 assimilation and the combined energy and water balance. All three process‐orientated models are calibrated on measurements in a Douglas fir stand in the Netherlands. The performances of these models are equally good, although they have different complexities, different numbers of calibration parameters (ranging from 1 to 6) and the models are calibrated on different measurements (eddy correlation at canopy level or CO2 measurements at leaf level). The resemblance of the model results is caused by the calibration procedure and by the high impact of radiation in all three cases. Significant discrepancies become apparent when differences between model responses are examined and when specific (short) periods are selected when input variables are uncoupled. The main differences between the models are caused by another formulation of leaf area index and vapour pressure deficit (VPD). Considerable differences in simulated transpiration occur in the afternoon as a result of the diurnal hysteresis between VPD and radiation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Generally, forest transpiration models contain model parameters that cannot be measured independently and therefore are tuned to fit the model results to measurements. Only unique parameter estimates with high accuracy can be used for extrapolation in time or space. However, parameter identification problems may occur as a result of the properties of the data set. Time‐series of environmental conditions, which control the forest transpiration, may contain periods with redundant or coupled information, so called collinearity, and other combinations of conditions may be measured only with difficulty or incompletely. The aim of this study is to select environmental conditions that yield a unique parameter set of a canopy conductance model. The parameter identification method based on localization of information (PIMLI) was used to calculate the information content of every individual artificial transpiration measurement. It is concluded that every measurement has its own information with respect to a parameter. Independent criteria were assessed to localize the environmental conditions, which contain measurements with most information. These measurements were used in separate subdata sets to identify the parameters. The selected measurements do not overlap and the accuracies of the parameter estimates are maximized. Measurements that were not selected do not contain additional information that can be used to further maximize the parameter accuracy. Thereupon, the independent criteria were used to select eddy correlation measurements and parameters were identified with only the selected measurements. It is concluded that, for this forest and data set, PIMLI identifies a unique parameter set with high accuracy, whereas conventional calibrations on subdata sets give non‐unique parameter estimates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
W. Zhao  X. Chang  Z. Zhang 《水文研究》2009,23(10):1461-1470
As an important source of income in the region's economy, the jujube plantations are very common in arid north‐western China, and their planted areas continue to expand. In the central Heihe River Basin of arid north‐western China, Linze jujube (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.) plantations cover more than 10,000 ha, too. Water use by this species is expected to change or modify catchment hydrological process. To our knowledge, there is no information on the transpiration and canopy conductance of the jujube plantations in arid north‐western China. Therefore, Transpiration and canopy conductance were monitored in a 14‐year‐old Linze jujube orchard. The experiment was carried out in the central Heihe River Basin, near Pingchuan Town (Linze County, Gansu Province, China) during growing season of 2006, from May to the first ten days of October. Eight trees were used to measure sap flow using the heat‐pulse‐velocity method. The orchard was irrigated adequately during the study. Transpiration was estimated from the sap flow measurements. During the experiment, the transpiration rate of the orchard ranged from 0·32 to 1·40 mm per day. Canopy conductance was obtained from estimated daily transpiration and climatic variables measured on a half‐hour basis, and canopy conductance for water vapour transfer was between 1·20 to 82·57 mm s?1, with a mean of 11·86 ± 6·84 mm s?1 during the observation period. Air temperature and vapour‐pressure deficit exhibited a linear relationship with sap flow velocity and the relationship between these factors and canopy conductance could be represented by an exponential decay function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A model for calculating CO2 flux in the wheat field and an algorithm for estimating CO2 flux in the mejonal scale were presented using the remote sensing data and supplementary micpo-met~orological data. First of all a-longertenn measurement wae carried out during winter wheat growing period in Yucheng Experimental Station udng the spectmradiometer system, the thermal infrared radiometer system, the Bowen-ratio device as well as the eddy-correlation device. Two kinds of issues concerning remote sensing and CO2 flux can be obtained. Based on the obeervations a remote sensing model was estabilished. Then when the NOAA-AVHRR passed over the experimental area simultaneous measurements were carried out with the satellites. A regional distribution image for CO2 flux over wheat canopy in North China (500×500 km2) was made using the supplementary ground data and NOAA-AVHRR remote sensing data which was calibrated by the synchronous observation. The sources and sinks for CO2 fluxes in the region can be seen obviously. Project supported by the National Natural Science Foundation of China (Grant Nos. 49671058, 49890330)  相似文献   

8.
Surface mining in the Elk Valley, British Columbia, involves removing vegetation, soil, and rock to access underlying metallurgical coal. Subsequent waste rock is placed into adjacent valleys, frequently burying headwater streams. Due to their coarse texture, waste rock piles increase infiltration and percolation, increasing solute transport and concentration of geochemicals in downstream surface waters. Previous research suggests that weathering solutes are transport limited, and it is hypothesized that revegetation will enhance evapotranspiration (ET) and reduce percolation through the waste rock, potentially reducing loading. This study examined the surface‐atmosphere water and energy exchanges using the eddy covariance technique for three waste rock surfaces with different levels of reclamation: (a) an ~25‐year‐old mixed coniferous forest, (b) a grass site, and (c) bare waste rock. Measurements were taken from May to October in 2013 and 2014. Soil moisture and matric suction were measured to 1‐m depth. Sap flow at the forested site was measured to partition transpiration from total ET. In all years, ET rates were greatest at the forested site, followed by the grass cover and lowest at the bare waste rock site. Growing season ET rates at the forest were 56% higher than grass in 2013 and 35% higher in 2014. At the vegetated sites, climate was the main driver of ET, with high radiation, and warm and dry conditions enhancing fluxes. Maximum ET at these sites corresponded with peak growing season, with vegetation increasing both transpiration and rainfall interception. At the bare rock site, ET was weakly related to atmospheric conditions, and ET rates briefly increased during periods following rainfall when near‐surface soil moisture was enhanced. Transpiration comprised 29% of overall ET at the forest site from late July to early October. Results suggest that vegetation establishment can be incorporated into mine reclamation plans to enhance ET rates and limit percolation, potentially reducing downstream geochemical loads.  相似文献   

9.
Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified diel signals in summer low flow, determined the lag between diel signals and evapotranspiration demand and identified seasonal trends in the evolution of the lag at each site. The lag between vegetation water use and streamflow response increases throughout summer at each subcatchment, with the rate of increase as a function of catchment stream length and other catchment characteristics such as geology, vegetation and stream geomorphology. These findings support the hypothesis that variations in stream velocity are the key control on the seasonal evolution of the observed lags. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Tuolumne Meadows is a groundwater dependent ecosystem in the Sierra Nevada of California, USA, that is threatened by hydrologic impacts that may lead to a substantial loss of organic matter in the soil. In order to provide a scientific basis for management of this type of ecosystem, this paper quantifies the effect of soil organic content on soil water retention and water use by plants. First, we show a substantial dependence of soil water retention on soil organic content by correlating Van Genuchten soil water retention parameters with soil organic content, independent of soil texture. Then, we demonstrate the impact of organic content on plants by simulating the degree to which root water uptake is affected by soil water retention with the use of a physically based numerical model of variably saturated groundwater flow. Our results indicate that the increased water retention by soil organic matter contributes as much as 8.8 cm to transpiration, or 35 additional water‐stress free days, during the dry summer when plants experience increased water stress.  相似文献   

11.
In headwater catchments, streamflow recedes between periods of rainfall at a predictable rate generally defined by a power–law relationship relating streamflow decay to streamflow. Research over the last four decades has applied this relationship to predictions of water resource availability as well as estimations of basin‐wide physiographic characteristics and ecohydrologic conditions. However, the interaction of biophysical processes giving rise to the form of these power–law relationships remains poorly understood, and recent investigations into the variability of streamflow recession characteristics between discrete events have alternatively suggested evapotranspiration, water table elevation, and stream network contraction as dominant factors, without consensus. To assess potential temporal variability and interactions in the mechanism(s) driving streamflow recession, we combine long‐term observational data from a headwater stream in the southern Appalachian Mountains with state and flux conditions from a process‐based ecohydrologic model. Streamflow recession characteristics are nonunique and vary systematically with seasonal fluctuations in both rates of transpiration and watershed wetness conditions, such that transpiration dominates recession signals in the early growing season and diminishes in effect as the water table elevation progressively drops below and decouples with the root zone with topographic position. As a result of this decoupling, there exists a seasonal hysteretic relationship between streamflow decay and both evapotranspiration and watershed wetness conditions. Results indicate that for portions of the year, forest transpiration may actively compete with subsurface drainage for the same water resource that supplies streamflow, though for extended time periods, these processes exploit distinct water stores. Our analysis raises concerns about the efficacy of assessing humid headwater systems using traditional recession analysis, with recession curve parameters treated as static features of the watershed, and we provide novel alternatives for evaluating interacting biological and geophysical drivers of streamflow recession.  相似文献   

12.
The water balance of four different rainforest types in the Wet Tropics region of north Queensland is inferred from measurements of canopy hydrological components undertaken for periods between 391 to 657 days. These measurements of rainfall, cloud interception, stem-flow, throughfall, canopy interception and transpiration have revealed considerable differences in the canopy water balance of different locations as a result of forest structural differences, altitude, exposure and climate. Cloud interception is a significant extra input of water to forests at high altitude sites (>1000 m) and varies between 7 and 29% of the total water input. At coastal and lower montane rainforests annual total evaporation is consistently around 50% of the total water input, but in upper montane cloud forest this drops dramatically to only 13% of the water input. At all sites actual evaporation is greater than potential evaporation for most of the year and on an annual basis exceeds potential by between 2 and 53%. The source of this additional energy is uncertain, but is likely to come from advection. Annual interception at all the rainforest sites was greater than annual transpiration, with transpiration dominating in the dry season and interception dominating in the wet season. All of the rainforests have a large annual net water balance to sustain runoff and recharge. Towards the end of the dry season runoff and recharge can cease in coastal lowland and lower mountain forests and they may have to draw on soil moisture and/or ground water at this time. In contrast, upper montane cloud forests have a positive net water balance throughout the year and are therefore an important source of dry season river flows. Furthermore, their exceptionally large annual runoff (∼6500 mm year−1) is a major source of downstream water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Forest biomass reductions in overgrown forests have the potential to provide hydrologic benefits in the form of improved forest health and increased streamflow production in water-limited systems. Biomass reductions may also alter evaporation. These changes are generated when water that previously would have been transpired or evaporated from the canopy of the removed vegetation is transferred to transpiration of the remaining vegetation, streamflow, and/or non-canopy evaporation. In this study, we combined a new vegetation-change water-balance approach with lumped hydrologic modelling outputs to examine the effects of forest biomass reductions on transpiration of the remaining vegetation and streamflow in California's Sierra Nevada. We found that on average, 102 mm and 263 mm (8.0% and 20.6% of mean annual precipitation [MAP]) of water were made available following 20% and 50% forest biomass-reduction scenarios, respectively. This water was then partitioned to both streamflow and transpiration of the remaining forest, but to varying degrees depending on post-biomass-reduction precipitation levels and forest biomass-reduction intensity. During dry periods, most of the water (approximately 200 mm [15.7% on MAP] for the 50% biomass-reduction scenario) was partitioned to transpiration of the remaining trees, while less than 50 mm (3.9% on MAP) was partitioned to streamflow. This increase in transpiration during dry periods would likely help trees maintain forest productivity and resistance to drought. During wet periods, the hydrologic benefits of forest biomass reductions shifted to streamflow (200 mm [15.7% on MAP]) and away from transpiration (less than 150 mm [11.8% on MAP]) as the remaining trees became less water stressed. We also found that streamflow benefits per unit of forest biomass reduction increased with biomass-reduction intensity, whereas transpiration benefits decreased. By accounting for changes in vegetation, the vegetation-change water balance developed in this study provided an improved assessment of watershed-scale forest health benefits associated with forest biomass reductions.  相似文献   

14.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Studies of evapotranspiration (ET) processes in forests often only measure one component of total ET, most commonly interception. This study examined all three components of annual ET (interception, evaporation from the forest floor and transpiration) and the correlations between them at 18 plantation forest sites in two species. All plantations had closed canopies, and sparse or no understorey. Single‐sided leaf area index averaged 3.5 (standard deviation ±0.5) in Eucalyptus globulus Labill. and 6.1 (±0.8) in Pinus radiata D.Don. Measurements included annual totals of rainfall in the open and under the canopy, stem flow (four sites only), evaporation from the forest floor and transpiration by the overstorey. Interception (I) averaged 19% (±4.9) of annual rainfall in E. globulus compared with 31% (±11.1) in P. radiata. However, higher annual interception in P. radiata did not result in higher total ET because annual evaporation from the forest floor (E) averaged 29% (±4.9) of rainfall in E. globulus but only 15% (±3.5) in P. radiata. Hence, the relative contribution of annual I plus E to ET did not differ significantly between the two species, averaging 48% (±7.3) of annual rainfall in E. globulus compared with 46% (±11.8) in P. radiata. As reported previously, transpiration did not differ significantly between the two species either, but was strongly related to depth‐to‐groundwater. In closed canopy plantations, mean annual ET did not differ between the two species. We conclude that when grown in plantations under similar soil and climatic conditions, conifer and broad‐leaved tree species can have similar annual ET, once the canopy of the plantation has closed. Lower average annual interception in broad‐leaved trees was offset by higher soil evaporation. These results highlight the importance of measuring all components of ET in studies of vegetation water use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
As is widely known, there is a severe shortage of water resources in North China. There have been frequent droughts in recent years. Developing water saving measures, especially in agricul-ture, has become an urgent task. In water-saving agriculture, one …  相似文献   

19.
Transpirations of three dominated tree species, namely Mongol Scotch Pine (Pinus sylvestris var. mongolica Litvin), White elm (Ulmus pumila) and Gansu Poplar (Populus gansuensis Wang et Yang) in oasis shelter forest (Linze site) and of two dominated tree species,namely Euphrates Poplar (Populus euphratica Oliv.) and Russia olive (Elaeagnus angustifolia Linn.) in lowland desert (Erjinaqi site) have been estimated using measured sapflow in summer,autumn and winter, 2002 and in spring, 2003. An ENVIS System was used for each site to measure microclimate variables, soil moisture and sapflow every half an hour, and the study time scale is one day. In the 104 days of observation during the growing season at the Linze site, the average daily sapflow of Gansu Poplar is 9.93L·d-1,and the average transpiration per unit leaf area is 1.99mm·d-1.For White elm tree,the daily average sapflow is 4.08L·d-1,while the daily average transpiration per unit leaf area is 0.49mm·d-1.The values for Mongol Scotch Pine are 3.91L·d-1 and 0.25mm·d-1,respectively.In the total 73 days of observation during the growing season at the Erjinaqi site, the daily average sapflows of Russia olive and Euphrates Poplar are 12.1 and 20.97L·d-1,respectively,and the average transpirations per unit leaf area are 0.22 amd 0.31mm·d-1,respectively.In the observation period of the growing season,tree conductances of Mongol Scotch Pine, White elm, Gansu Poplar or Russia olive show an exponential relationship with the daily average air temperature or vapour pressure deficit, but the relationship is not so obvious between tree conductance and global radiation. The transpiration process of each tree species is affected by all the observed four environmental variables. The response of tree conductance to different climatic factors changes with tree species. The effect of the same factor to the same tree species is also variable in different growing stages. The sapflow of every tree species is relatively large in later spring to early summer, and low in summer, and then reaches its largest value in later September. In the mid-November, the sapflow is relatively large, especially the deciduous tree species. This may be characteristic of the tree species in Arid Regions of Northwest China.  相似文献   

20.
Annual fluxes of canopy‐level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53·629 °N 106·200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour for both species. On a seasonal basis, the canopy conductance of the aspen accounted for 70% of the surface conductance, with the latter a strong function of the forest's leaf area index. On a half‐hour basis, the canopy conductance of both species decreased non‐linearly as the leaf‐surface saturation deficits increased, and was best parameterized and showed similar sensitivities to a modified form of the Ball–Berry–Woodrow index, where relative humidity was replaced with the reciprocal of the saturation deficit. The negative feedback between the forest evaporation and the saturation deficit in the convective boundary layer varied from weak when the forest was at full leaf to strong when the forest was developing or loosing leaves. The coupling between the air at the leaf surface and the convective boundary layer also varied seasonally, with coupling decreasing with increasing leaf area. Compared with coniferous boreal forests, the seasonal changes in leaf area had a unique impact on vegetation–atmosphere interactions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号