首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the application of system identification (SI) to long‐span cable‐supported bridges using seismic records. The SI method is based on the System Realization using Information Matrix (SRIM) that utilizes correlations between base motions and bridge accelerations to identify coefficient matrices of a state‐space model. Numerical simulations using a benchmark cable‐stayed bridge demonstrate the advantages of this method in dealing with multiple‐input multiple‐output (MIMO) data from relatively short seismic records. Important issues related to the effects of sensor arrangement, measurement noise, input inclusion, and the types of input with respect to identification results are also investigated. The method is applied to identify modal parameters of the Yokohama Bay Bridge, Rainbow Bridge, and Tsurumi Fairway Bridge using the records from the 2004 Chuetsu‐Niigata earthquake. Comparison of modal parameters with the results of ambient vibration tests, forced vibration tests, and analytical models are presented together with discussions regarding the effects of earthquake excitation amplitude on global and local structural modes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

4.
大型桥梁地震安全性在线监测与评估系统研究   总被引:1,自引:1,他引:0  
大型桥梁地震安全性在线监测与评估系统包括四个方面的技术内容:1基于B/S架构的桥梁强震观测台阵实时监测技术;2基于多指标信息融合技术的桥梁安全评估方法;3快速桥梁数值仿真技术和抗震性能评估;4桥梁监测与评估系统集成与可视化系统。该系统实现了桥梁强震监测数据实时采集、传输、分析、诊断、仿真和评估一体化。平时不间断地分析诊断桥梁与初始或完好状态动力特性的差异,为桥梁养护和加固提供参考依据;发生船撞或地震时,快速评估事件后桥梁的安全状态,并对异常进行警报,给桥梁管理方提供破坏事件的强度信息。  相似文献   

5.
6.
Bridge design should take into account not only safety and functionality, but also the cost effectiveness of investments throughout a bridge life‐cycle. This paper presents a probabilistic approach to compute the life‐cycle cost (LCC) of corroding reinforced concrete (RC) bridges in earthquake‐prone regions. The approach is developed by combining cumulative seismic damage and damage associated with corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low‐cycle fatigue analysis. Chloride‐induced corrosion of steel reinforcement is computed based on Fick's second law of diffusion. The proposed methodology accounts for the uncertainties in the ground motion parameters, the distance from the source, the seismic demand on the bridge, and the corrosion initiation time. The statistics of the accumulated damage and the cost of repairs throughout the bridge life‐cycle are obtained by Monte‐Carlo simulation. As an illustration of the proposed approach, the effects of design parameters on the LCC of an example RC bridge are studied. The results are valuable in better estimating the condition of existing bridges and, therefore, can help to schedule inspection and maintenance programs. In addition, by taking into consideration the two deterioration processes over a bridge life‐cycle, it is possible to estimate the optimal design parameters by minimizing, for example, the expected cost throughout the life of the structure. A comparison between the effects of the two deterioration processes shows that, in seismic regions, the cumulative seismic damage affects the reliability of bridges over time more than the corrosion even for corrosive environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
矮塔斜拉桥有着良好的受力性能与美观性能,因此抗震设计对矮塔斜拉桥至关重要.摩擦摆式减隔震设计能够将桥梁上部结构与下部结构分离,从而延长结构的自振周期和摩擦耗能机理来降低和耗散传递到桥梁上部结构的能力.本文以靖远金滩黄河大桥(100+168+100)m矮塔斜拉桥为分析模型,利用摩擦摆式减隔震支座对矮塔斜拉桥的墩身进行减隔...  相似文献   

8.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
为研究基础隔震体系对转体斜拉桥抗震性能的影响,以新建福厦客运专线太城溪特大桥为工程背景,建立全桥动力模型,进行非线性时程分析。选取7组地震波与5组曲面摩擦摆支座基础隔震方案,对比分析基础隔震转体斜拉桥的抗震性能。结果表明:采用基础隔震体系后,转体斜拉桥的自振周期增大,整体刚度与地震响应显著降低;曲面摩擦摆支座对结构变形的影响较小,但会使内力大幅降低,可作为该转体斜拉桥基础隔震体系的隔震支座;采用基础隔震体系后,主墩墩底弯矩减小44.83%~55.82%,剪力减小40.3%~63.09%,塔梁固结处产生最大位移65.53 mm。  相似文献   

10.
This study examines the efficacy of using seismic isolation to favorably influence the seismic response of cable‐stayed bridges subjected to near‐field earthquake ground motions. In near‐field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many cable‐stayed bridges have significant structural response modes. This combination of factors can result in large tower accelerations and base shears. In this study, lead–rubber bearing seismic isolators were modeled for three cable‐stayed bridges, and three cases of isolation were examined for each bridge. The nine isolated bridge configurations, plus three non‐isolated configurations as references, were subjected to near‐field earthquake ground motions using three‐dimensional time‐history analyses. Introduction of a small amount of isolation is shown to be very beneficial in reducing seismic accelerations and forces while at the same time producing only a modest increase in the structural displacements. There is a low marginal benefit to continue to increase the amount of isolation by further lengthening the period of the structure because structural forces and accelerations reduce at a diminishing rate whereas structural displacements increase substantially. In virtually all cases the base shears in the isolated bridges were reduced by at least 50several instances by up to 80individual near‐field records showed large variability from one record to the next, with coefficients of variation about the mean as large as 50assessing the characteristics of near‐field ground motion for use in isolation design of cable‐stayed bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This study investigated the seismic performance and soil‐structure interaction of a scoured bridge models with pile foundation by shaking table tests using a biaxial laminar shear box. The bridge pier model with pile foundation comprised a lumped mass representing the superstructure, a steel pier, and a footing supported by a single aluminum pile within dry silica sand. End of the pile was fixed at the bottom of the shear box to simulate the scenario that the pile was embedded in a firm stratum of rock. The bridge pier model was subjected to one‐directional shakes, including white noise and earthquake records. The performance of the bridge pier model with pile foundation was discussed for different scoured conditions. It is found that the moment demand of pile increases with the increase of scoured depth whereas the moment demand of the bridge pier decreases, and this transition may induce the bridge failure mechanism transform from pier to pile. The seismic demand on scoured pile foundations may be underestimated and misinterpreted to a certain degree. When evaluating the system damping ratio with SSI, the system response may not be significantly changed even if the soil viscous damping contribution is varied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

13.
This paper proposes a hybrid control strategy combining passive and semi‐active control systems for seismic protection of cable‐stayed bridges. The efficacy of this control strategy is verified by examining the ASCE first‐generation benchmark problem for a seismically excited cable‐stayed bridge, which employs a three‐dimensional linearized evaluation bridge model as a testbed structure. Herein, conventional lead–rubber bearings are introduced as base isolation devices, and semi‐active dampers (e.g., variable orifice damper, controllable fluid damper, etc.) are considered as supplemental damping devices. For the semi‐active dampers, a clipped‐optimal control algorithm, shown to perform well in previous studies involving controllable dampers, is considered. Because the semi‐active damper is a controllable energy‐dissipation device that cannot add mechanical energy to the structural system, the proposed hybrid control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective in protecting seismically excited cable‐stayed bridges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The ability of a recently proposed seismic isolation system, with inherent self‐stopping mechanism, to mitigate or even eliminate seismic pounding of adjacent structures is investigated under severe near‐fault earthquakes. The isolation system is referred to as roll‐in‐cage (RNC) isolator. It is a rolling‐based isolator that provides in one unit the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, hysteretic energy dissipation, and resistance to minor vibration loads. In addition, the RNC isolator is distinguished by a self‐stopping (buffer) mechanism to limit the bearing displacement under excitations stronger than a design earthquake or at limited seismic gaps, and a linear gravity‐based self‐recentering mechanism to prevent permanent bearing displacement without causing vertical fluctuation of the isolated structure. A previously developed multifeature SAP2000 model of the RNC isolator is improved in this paper to account for the inherent buffer mechanism's damping. Then, the effectiveness of the isolator's buffer mechanism in limiting peak bearing displacements is studied together with its possibly arising negative influence on the isolation efficiency. After that, the study investigates how to alleviate or even eliminate those possibly arising drawbacks, due to the developed RNC isolator's inner pounding as a result of its buffer activation, to achieve efficient seismic isolation with no direct structure‐to‐structure pounding, considering limited seismic gaps with adjacent structures and near‐fault earthquakes. The results show that the RNC isolator could be an efficient solution for aseismic design in near‐fault zones considering limited seismic gaps. Earthquake Engineering and Structural Dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.  相似文献   

16.
This paper carries out a parametrical study of the pounding phenomenon associated with the seismic response of multi‐span simply supported bridges with base isolation devices. In particular, the analyses focus on the causal relationship between pounding and the properties of a spatially varying earthquake ground motion. In order to include the effect of the torsional component of pounding forces on the seismic response of the whole structure, a three‐dimensional (3D) finite element model has been defined and 3D non‐linear time‐history analyses have been performed. A parametrical study on the size of the gaps between adjacent bridge decks has highlighted that the pounding effects are amplified when the spatially varying ground motion time histories at each support are considered. Because of a spatially varying input, the pounding forces can assume values 3–4 times larger than those derived by a conventional seismic analysis with uniform input or with spatial input but considering ground motion wave passage effect only. The numerical results show that in order to achieve an acceptably safe structural performance during seismic events, a correct design of the isolation devices should take into account the relative displacements calculated by means of a non‐linear time‐history analysis with multi‐support excitation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic performance of the Bolu Viaduct in the Duzce, Turkey, earthquake of November 1999 was studied via a non‐linear, time‐history analysis of a multi‐degree of freedom model. The viaduct had a seismic isolation system consisting of yielding‐steel energy dissipation units and sliding pot bearings. The Duzce earthquake caused a surface rupture across the viaduct, which resulted in excessive superstructure movement and widespread failure of the seismic isolation system. The effect of the rupture was modeled by a static, differential ground displacement in the fault‐parallel direction across the rupture. The ground motions used in the analysis contain common near‐fault features including a directivity pulse in the fault‐normal direction and a fling step in the fault‐parallel direction. The analysis used a finite element package capable of modeling the mechanical behavior of the seismic isolation system and focused on the structural response of a 10‐span module of the viaduct. This analysis showed that the displacement of the superstructure relative to the piers exceeded the capacity of the bearings at an early stage of the earthquake, causing damage to the bearings as well as to the energy dissipation units. The analysis also indicated that shear keys, both longitudinal and transverse, played a critical role in preventing collapse of the deck spans. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

18.
The seismic response of a critical rotating machine either rigidly attached to a floor or independently isolated housed within an initially aseismically designed or uncontrolled structure are investigated. A particular isolation system, the Resilient‐Friction Base Isolator (RFBI), is employed. Finite element formulations of a rotor‐disk‐bearing model on a rigid base are developed. The equations of motion for the combined rotating machine–structure–RFBI systems are presented. Parametric studies are performed to investigate the effects of variations in system physical properties including friction coefficient, mass ratio, shaft flexibility, bearing rigidity, bearing damping and speed of rotation on the response of rotating machines for the combined rotating machine–structure–isolator systems. Comparative studies in the peak response of the rotating machine supported on various isolation systems and the corresponding fixed base system are carried out. The study indicates that the Resilient‐Friction Base Isolator can significantly reduce the seismic response of rotating components to potentially damaging ground excitations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The convex model approach is applied to derive the robust seismic fragility curves of a five-span isolated continuous girder bridge with lead rubber bearings (LRB) in China. The uncertainty of structure parameters (the yield force and the post-yield stiffness of LRB, the yield strength of steel bars, etc.) are considered in the convex model, and the uncertainty of earthquake ground motions is also taken into account by selecting 40 earthquake excitations of peak ground acceleration magnitudes ranging from 0.125 to 1.126 g. A 3-D finite element model is employed using the software package OpenSees by considering the nonlinearity in the bridge piers and the isolation bearings. Section ductility of piers and shearing strain isolation bearings are treated as damage indices. The cloud method and convex model approach are used to construct the seismic fragility curves of the bridge components (LRB and bridge piers) and the bridge system, respectively. The numerical results indicate that seismic fragility of the bridge system and bridge components will be underestimated without considering the uncertainty of structural parameters. Therefore, the failure probability P f,max had better be served as the seismic fragility, especially, the fragility of the bridge system is largely dictated by the fragility of LRB. Finally, the probabilistic seismic performance evaluation of the bridge is carried out according to the structural seismic risk estimate method.  相似文献   

20.
2021年5月22日青海玛多发生了Ms7.4级地震,从地震中桥梁震害情况看:此次地震的特点是断层北侧震害轻,南侧震害重。位于断层南侧的野马滩大桥是简支梁桥,发生大量落梁,是此次地震中受损最为严重的大桥之一;而位于北侧的大野马岭大桥是连续梁桥,仅发生了部分挡块开裂。其中原因值得深入研究。本文通过有限元分析软件Midas/Civil建立大野马岭大桥(上行线)模型,进行地震反应分析,讨论分析了大野马岭大桥在此次地震中的震害机理。发现南北向的地震动是造成该桥横向挡块破坏的主要原因,东西向地震动因受到桥台和纵向挡块的约束并没有出现严重损伤。若将该桥由连续梁桥变成简支梁桥,地震反应会有所变化,但总体趋势特点变化并不大。另外,本文通过现有资料选定5组地震动作为输入,进行地震反应分析,比较分析不同地震动对该桥的影响,并验证地震动模拟效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号