首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ turbidity meters are being increasingly used to generate continuous records of suspended sediment concentration in rivers. However, the usefulness of the information obtained depends heavily on the existence of a close relationship between fluctuations in suspended sediment concentration and turbidity and the calibration procedure that relates suspended sediment concentration to the turbidity meter's signal. This study assesses the relationship between suspended sediment concentration and turbidity for a small (1·19 km2) rural catchment in southern Brazil and evaluates two calibration methods by comparing the estimates of suspended sediment concentration obtained from the calibrated turbidity readings with direct measurements obtained using a USDH 48 suspended sediment sampler. With the first calibration method, the calibration relationship is derived by relating the turbidity readings to simultaneous measurements of concentration obtained from suspended sediment samples collected from the vicinity of the turbidity probe during flood events. With the second method, the calibration is based on the readings obtained from the turbidity meter when the probe immersed in samples of known concentration prepared using soils collected from the catchment. Overall, there was a close link between fluctuations in suspended sediment concentration and turbidity in the stream at the outlet of the catchment, and the estimates of sediment concentration obtained using the first calibration method corresponded closely with the conventionally measured sediment concentrations. However, use of the second calibration method introduced appreciable errors. When the estimated sediment concentrations were compared with the measured values, the mean errors were ± 122 mg l?1 and + 601 mg l?1 for the first and second calibration procedures respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Properties of suspended particulate matter play a vital role in transport processes, but information from boreal lowland river systems with high organic loads is limited. This study analysed data from 2 years of sampling at 30 locations in Finland (204 samples in total) using suspended particulate matter samplers to determine effective and absolute particle size and organic fractions. Mean d50 value was 22 and 49 µm for absolute and effective particle size, respectively. The organic fraction content ranged from 2.1% to 36% (mean 9.6%), highlighting the importance of particle organic matter for suspended particulate matter flux in the region. The results indicated that the suspended particulate matter particle size distribution and load in the study region is dominated by composite particles. There were considerable spatial and temporal variations in transport of organic fractions, effective particle size and degree of aggregation (range 1.5–93%). Headwaters and, in particular, late summer and spring flood conditions with flow peaks produced the largest composite particles, whereas agriculture‐dominated sites produced smaller but more tightly compacted particles. Organic plant fibres appeared to play a vital role in floc formation in peat‐covered catchments, whereas in agriculture‐dominated catchments, land use‐derived aggregates dominated the composition. This study provides empirical evidence of the importance of effective particle size measurement in understanding the dynamics of suspended particulate matters in boreal lowland river systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Numerous quantitative and qualitative variables control suspended sediment dynamics in karst systems. The objective of this study was to identify the hydrodynamic variables controlling the transport properties of particles in a karst aquifer (western Paris basin). The particle size distribution of suspended sediment infiltrating via a swallow hole was compared to that in discharge from a spring, allowing identification of the particle transport properties of the karst system. Hill and Smith analysis, a type of multivariate analysis that allows joint examination of quantitative and qualitative variables, was used to identify the hydrodynamic parameters controlling the transport properties of the suspended matter. The results demonstrate that the particle size distribution discharging at the karst spring is controlled by spring discharge and the hydraulic gradient of the system. The hydraulic gradient is defined by the piezometric level and the stage of the Seine River, which is in turn controlled by the tide. This study illustrates the use of Hill and Smith analysis to identify those variables which control suspended sediment transport. It also illustrates the application of this analysis to identify boundary conditions and evaluate variables which control the behaviour of the hydrologic system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Many of the commonly used analytical techniques for assessing the properties of fluvial suspended particulate matter (SPM) are neither cost effective nor time efficient, making them prohibitive to long‐term high‐resolution monitoring. We present an in‐depth methodology utilizing two types of spectroscopy which, when combined with automatic water samplers, can generate accurate, high‐temporal resolution SPM geochemistry data, inexpensively and semi‐destructively, directly from sediment covered filter papers. A combined X‐ray fluorescence spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy approach is developed to estimate concentrations for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds (organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within SPM trapped on quartz fibre filters at masses as low as 3 mg. Calibration models with small prediction errors are derived, along with mass correction factor models to account for variations in retained SPM mass. Spectral pre‐processing methods are shown to enhance the reproducibility of results for some compounds, and the importance of filter paper selection and homogeneous sample preparation in minimizing spectral interference is emphasized. The geochemical signal from sediment covered filter papers is demonstrated to be time stable enabling samples to be stored for several weeks prior to analysis. Example results obtained during a heavy precipitation event in October 2012 demonstrate the methodology presented here has considerable potential to be utilized for high‐resolution monitoring of SPM geochemistry under a range of in‐stream hydrological conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A scheme for the fractionation and concentration of suspended particulate matter (SPM) from natural waters has been tested. This scheme involves the sequential use of three fractionation techniques—sieving, continuous flow centrifugation and tangential flow filtration to collect gram amounts of SPM over the entire particulate and colloidal size range. The separation scheme is able to process large samples (ca. 1001), within reasonable times (ca. 1 day) and the apparatus is portable. Reproducibility and potential artifacts introducing during the fractionation and concentration of SPM, particularly when tangential flow filtration is used, are discussed. It has been shown that there is a systematic increase in the content of organic carbon, Mg, Ca, Na, K, Cu and Zn with decreasing particle size, highlighting the importance of the colloidal ( < 1 μm) fraction.  相似文献   

7.
《国际泥沙研究》2020,35(5):444-454
Turbidity is used as a surrogate for suspended sediment concentration (SSC), and as a regulatory tool for indicating land use disturbance and environmental protection. Turbidity relates linearly to suspended material, however, can show non-linear responses to particulate organic matter (POM), concomitant with changes in particle size distribution (PSD). In the paper the influence of ultra-fine particulate matter (UFPM) on specific turbidity and its association with POM in suspended sediment are shown for alpine rivers in the Southern Alps of New Zealand. The approach was two-fold: a field-based investigation of the relations between SSC, POM, and turbidity sampled during event flow; and experimental work on hydrodynamic particle size effects on SSC, POM, PSD, and turbidity. Specific turbidity changes over event flow and are sensitive to increasing proportional amounts of sand, UFPM, and POM in suspension. Furthermore, the UFPM is the size fraction (<6 μm) where POM increases. The implications of the current study are that the slopes of turbidity-SSC relations are undesirable in locations that may be dominated by cyclic release of POM or distinct pulses of fine-grained material. At locations where the turbidity-SSC slopes approximate 2, the POM proportion is usually <10% of the total suspended load. However, when turbidity-SSC slopes are <1 this is likely caused by high amounts of side-scatter from UFPM concomitant with higher proportions of POM. Thus, the use of turbidity as a proxy for determining SSC may have serious consequences for the measurement of representative suspended sediment data, particularly in locations where POM may be a significant contributor to overall suspended load.  相似文献   

8.
Monitoring and modeling of the distribution of suspended particulate matter (SPM) is an important task, especially in coastal environments. Several SPM models have been developed for the North Sea. However, due to waves in shallow water and strong tidal currents in the southern part of the North Sea, this is still a challenging task. In general there is a lack of measurements to determine initial distributions of SPM in the bottom sediment and essential model parameters, e.g., appropriate exchange coefficients. In many satellite-borne ocean color images of the North Sea a plume is visible, which is caused by the scattering of light at SPM in the upper ocean layer. The intensity and length of the plume depends on the wave and current climate. It is well known that the SPM plume is especially obvious shortly after strong storm events. In this paper a quasi-3-D and a 3-D SPM transport model are presented. Utilizing the synergy of satellite-borne ocean color data with numerical models, the vertical exchange coefficients due to currents and waves are derived. This results in models that for the first time are able to reproduce the temporal and spatial evolution of the plume intensity. The SPM models consist of several modules to compute ocean dynamics, the vertical and horizontal exchange of SPM in the water column, and exchange processes with the seabed such as erosion, sedimentation, and resuspension. In the bottom layer, bioturbation via benthos and diffusion processes is taken into account.Responsible Editor: Jörg-Olaf Wolff  相似文献   

9.
Seasonal observations on the nature and concentration of suspended particulate matter (SPM) are presented for a cross-section of the English Channel, between the Isle of Wight (UK) and Cotentin peninsula (France) i.e. the western boundary of the eastern English Channel. The highest concentrations of suspended material are found adjacent to the English coastline, whereas the offshore waters are associated with low concentrations. Seasonal variations in the concentration and nature of suspended material are identified, with highest concentrations in winter. At this time, the suspended particles are characterised generally by peaked grain size spectra and an enrichment in coarse silt particles; in summer, the distributions are generally flat. The diatom communities found within the suspended matter indicate that material resuspended in the coastal zone and the estuarine environments is transported offshore. SPM fluxes (based upon the observed SPM concentrations and the output from a 2-D hydrodynamic model) from the western Channel through the Wight–Cotentin Section, ranged between 2 and 71×106 t a−1 with a mean of around 20×106 t a−1 over the period of the observations (1994–1995). These fluxes are comparable to the order of magnitude and mean value reported as output through the Dover Strait. Therefore, it is possible that the eastern English Channel may be characterised as an area of fine-grained sediment ‘bypass'. This interpretation is corroborated by: (a) the absence of fine-grained sediment deposits over the area; and (b) correlation between the potential resuspension time of the fine particles and the seabed sediment distribution.  相似文献   

10.
The levels of selected organic markers, including 17 polycyclic aromatic hydrocarbons (PAHs), 16 of which are classified as priority pollutants by the US-EPA and perylene, aliphatic hydrocarbons (total and linear alkanes) and petroleum biomarkers (hopanes and steranes), were measured in suspended particulate matter (SPM) of the Mundaú-Manguaba estuarine-lagoon system (MMELS) in northeastern Brazil and the Paraíba do Sul River (PSR) estuary in southeastern Brazil, both of which are affected by sugarcane agriculture and urbanization. A total of 33 surface water samples of SPM were collected (22 from the MMELS and 11 from the PSR). The ∑16PAH ranged from 221 to 1243 ng g−1 in the MMELS and from 228 to 1814 ng g−1 in the PSR. Hopane and sterane concentrations in the PSR were higher than in the MMELS due to the input from petrogenic sources in PSR. The contributions of higher plants were also observed by n-alkane analyses. The PAH isomeric ratios indicated that the SPM from MMELS showed characteristics of combustion from biomass or petroleum and PSR was associated to petrogenic input, either from combustion or from unburned petroleum. Three sampling sites located near to the sugarcane plant and mouth of the rivers showed higher PAH concentrations and may largely be considered as highly contaminated. However, levels of n-alkanes and petroleum biomarkers in both study areas were relatively low.  相似文献   

11.
12.
13.
Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.  相似文献   

14.
基于偏最小二乘法的巢湖悬浮物浓度反演   总被引:5,自引:1,他引:5  
悬浮物浓度是水质评价的重要参数.对2009年6月巢湖实测的高光谱数据进行小波变换以去除数据冗余,减少建模时间.考虑到不同的小波基函数和分解尺度对数据压缩的影响,采用3个指标作为评价标准,最终选择小波基函数为Db4,分解尺度为4的小波变换,经小波变换后,原来的451个波段的光谱数据压缩为34个特征变量.利用小波变换后的光...  相似文献   

15.
Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old‐growth redwood forests has not been evaluated to date. Old‐growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km‐2 and soil organic carbon can reach 46 800 Mg km‐2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old‐growth redwood forests. Carbon content, determined through loss‐on‐ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km‐2 yr‐1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km‐2 yr‐1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km‐2 yr‐1. Because the current extent of old‐growth redwood stands is less than 5% of its pre‐European‐settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
A total of 1008 samples were collected from the eight major riverine runoff outlets in the Pearl River Delta (PRD) during 2005-2006 to estimate the fluxes of total organic carbon (TOC) to the coastal ocean off South China. The average dissolved organic carbon (DOC) concentration was 1.67 mg/L with a range of 1.38-2.13 mg/L. Concentrations of particulate organic carbon (POC) ranged from 2.66-4.12% of total suspended particulate matter (SPM). The fluxes of TOC and SPM from the PRD via the eight outlets were 9.2 x 10(5) and 2.5 x 10(7)tons/yr, respectively. Temporal variations in POC and DOC were observed at all outlets due to the large variability in runoff levels because of the seasonality of rainfall, and the riverine discharge amount was an important factor controlling TOC flux. The net contribution of organic carbon from the PRD to the coastal ocean represented approximately 0.1-0.2% of total organic carbon transported by rivers worldwide.  相似文献   

17.
Nephelometric turbidity, a measure of light scattering by particles suspended in water, is commonly used for indicating water clarity or suspended particulate matter (SPM) concentration. Different turbidity sensors have long been known to respond differently to the same suspensions. Design standards have been introduced to improve comparability of turbidity sensors, notably the ISO-7027 standard adopted by a number of manufacturers. We compared six ISO-7027-compliant nephelometers in river silt, kaolinite (layer clay) and algae-laden pond water, with rigorous tank experiments over a wide (100-fold) concentration range. The responses of four different field-type (in situ) and two cuvette instruments, all calibrated to the same freshly made formazin standards, were very strongly linearly correlated, but ranged about twofold in magnitude. Apparently, even sensors meeting the same design standard (ISO-7027) cannot be relied on to output numerically similar formazin nephelometric unit (FNU) values. This weak numerical comparability highlights the futility of treating turbidity as an absolute quantity, for example in environmental standards or studies of fine SPM effects on aquatic life. Indeed, reporting of turbidity in informal units such as FNU is best avoided. Turbidity records should be converted, by site-specific calibrations, to quantities of ultimate interest such as SPM concentration or total phosphorus. For performance monitoring of field nephelometers, we advocate routine site-specific calibration, not to formazin, but to the light beam attenuation coefficient (beam-c; units: m−1). Beam-c is a proper (SI) physical quantity that can be precisely measured by beam transmissometry, as in our experiments, and is accurately convertible to visual clarity.  相似文献   

18.
对两种水体悬浮颗粒物吸收系数测定方法及相关计算进行对比研究.通过长江中下游湖泊典型藻类的实验室培养,利用T方法和T-R方法分别对藻类颗粒物、藻类泥沙混合悬浊液进行吸收系数测定.通过颗粒物光谱吸收系数与叶绿素a之间的相关性关系,对比了两种方法的测量稳定性.通过对不同比例的藻类和无机悬浮颗粒物(ISS)的混合悬浊液进行分析,获得了不同浊度水体悬浮物吸收光谱的变化情况.结果表明,在纯藻或者泥沙含量较少的水体进行颗粒物吸收系数光谱测定时,T方法和T-R方法均可以采用,并且均具有较高的测定精度.然而,在泥沙含量相对较高的浑浊水体,应尽量选取T-R方法进行颗粒物吸收光谱的测定,以提高测定精度.长江中下游浅水湖泊由于底泥易受风浪影响发生再悬浮,因此在颗粒物吸收系数光谱测定中,当水体中ISS含量超过30 mg/L时,应选择T-R方法.  相似文献   

19.
Abstract

In discrete water quality surveys, riverine fluxes are associated with unknown uncertainties (biases and imprecisions). Annual flux errors have been determined from the generation of discrete surveys by Monte Carlo sorting for monthly sampling, from 10 years of daily records (120 records). Eight calculation methods were tested for suspended particulate matter, dissolved solids and dissolved and total nutrients in medium to large basins (103 to 106 km2) covering a wide range of hydrological conditions and riverine biogeochemistry. The performance of each method was analysed first by type of riverine material, which appeared to be much less pertinent than the flux variability matrix. The latter combines the river flow duration in two percent of time (W2%) and the truncated exponent (b50sup) defining the relationship of concentration vs discharge (CQ) at higher flows (C = aQb50sup). As flux variability increases (high W2% and/or high b50sup), averaging and rating curve methods become less efficient compared to hydrograph separation methods. Flux biases and imprecisions were plotted in the [W2%, b50sup] matrix for discrete monthly surveys.

Editor Z. W. Kundzewicz

Citation Raymond, S., Moatar, F., Meybeck, M., and Bustillo, V., 2013. Choosing methods for estimating dissolved and particulate riverine fluxes from monthly sampling. Hydrological Sciences Journal, 58 (6), 1326–1339.  相似文献   

20.
The internal source, especially resuspension process of the sediments in lakes and its environ- mental effect has been paid shining attention in the West as well as in China[1—6] although the influence of external source is important to water environment[7]. S鴑dergaard et al. compared the releases of soluble reactive phosphorus (SRP) in the surface sediments of Lake Arres before and after disturbance and they found that disturbing can increase the release by 20—30 times[3]. Robarts and ot…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号