首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the results of a detailed study of dissolved Sr isotopes in the Solimões and Beni‐Madeira Rivers of the Amazon basin. This study developed data collected over 8 years indicating large spatial and temporal variations in dissolved Sr isotopes among the rivers of the Amazon basin. The large 87Sr/86Sr variations were found to be correlated with the geology of the source areas of the suspended sediments. The Beni‐Madeira River displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões River displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. The isotopic fluctuations in the Beni‐Madeira River were observed to propagate downstream at least as far as Óbidos. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. We further demonstrate that the Sr isotopic composition and content in the Beni‐Madeira River is controlled by suspended sediments derived from the Andes. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The activities of the natural radionuclides (238U, 232Th, 226Ra and 40K) of the surface sediments in the Yangtze Estuary were determined and used to evaluate radiation hazards in the study area. The of activities of 238U, 232Th, 226Ra and 40K ranges from 14.1 to 62.3, 26.1 to 71.9, 13.7 to 52.3, and 392 to 898 Bq kg? 1, respectively, which were comparable to values of other regions in China. The activities of 232Th, 40K and 226Ra were clearly different from the global recommended values. The radium equivalent activity was less than the recommended limit of 370 Bq kg? 1; therefore, the sediment in this area can be safely used for reclamation. The external hazard index values were less than one. The average absorbed gamma dose rate and annual effective dose equivalent values were slightly greater than the world average value. 226Ra/238U and 232Th/238U ratios could potentially be applied for tracing sediment source.  相似文献   

3.
Concentrations of dissolved226Ra in Winyah Bay, South Carolina, and in the adjacent Atlantic Ocean are augmented by the desorption of radium from sediments in the low-salinity area of the estuary and diffusion from bottom sediments. Desorption of226Ra is reflected by lower concentrations in suspended sediments from higher-salinity regions of the estuary. Bottom sediments from the high-salinity region have lower226Ra/230Th activity ratios than those from the low-salinity end.The shape of the dissolved226Ra vs. salinity profile is influenced by the river discharge. During average-discharge conditions, desorption of226Ra from suspended and bottom sediments increases the dissolved226Ra concentrations by a factor of 3.5 as the water passes through Winyah Bay. High river discharge produces an initial increase of dissolved226Ra by a factor of 2 to 3 and apparently reflects only desorption from suspended sediments. By driving the salt wedge down the estuary and reducing the zone of contact of salt water with bottom sediments, the high-flow conditions sharply reduce the flux of226Ra from bottom sediments.  相似文献   

4.
Ba distribution in the ocean correlates linearly with that of 226Ra, reflecting little fractionation of the two elements in their uptake by marine organisms. The weight ratio of 226Ra/Ba is estimated to be (0.714 ± 0.08) × 10?8. A wide range of Ba/Si and Ra/Si values is noted in siliceous plankton collected from different oceans. This corraborates with the observations that, although silica co-varies with Ba and226Ra, the Ba/Si and226Ra/Si ratios in seawater vary from one area to another. Sediment pore water contains higher Ba concentrations than the overlying seawater. The resulting diffusive flux of Ba through the sediment-sea interface is estimated to be no more than 20% of the river input. The apparent oversaturation of dissolved Ba in pore fluids with respect to barite supports the idea that complexing of Ba with organic ligands may be important. Box model calculations show that: (1) on a per unit area basis, 226Ra flux from the continental shelf sediments is higher than that from the deep sea floor; (2) in the deep ocean, the magnitude of diffusive input of 226Ra from sediments is about equal to the loss due to radioactive decay.  相似文献   

5.
The pronounced desorption of Ba and226Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and226Ra by one and nine times, respectively. The desorptive flux of226Ra from estuaries accounts for 17–43% of the total226Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed.  相似文献   

6.
The flux of226Ra from bottom sediments has been determined from patterns of226Ra/230Th disequilibrium in ten deep-sea cores from the world oceans. Values range from ? 0.0015 dpm/cm2 yr (in the Atlantic) to 0.21 dpm/cm2 yr (in the north equatorial Pacific). The flux is poorly related to sediment type, but is inversely correlated in a non-linear fashion with sediment accumulation rate. There is a direct relationship between the production rate of226Ra near the sediment-water interface (i.e. the integrated230Th activity in the biologically mixed zone) and the226Ra flux. The226Ra concentration in near-bottom water follows the geographic variation in the226Ra flux. The high flux from north equatorial Pacific sediments especially is reflected in the high bottom water226Ra concentrations in that area. The data suggest that both rate of circulation and the magnitude of the radium flux influence the near-bottom226Ra concentration.  相似文献   

7.
The concentrations of radionuclides of the U-Th series (238U,234Th,234U,230Th,226Ra,210Pb,210Po, and232Th,228Ra,228Th) in the water of Narragansett Bay are reported. Analysis of the total, particulate, dissolved and colloidal forms of Th isotopes reveal a consistent removal behavior which is controlled mainly by the particulate matter concentration and the sediment resuspension rate. Half-removal times of Th from solution onto particles range from 1.5 to 15 days, and settling velocities of Th containing particles range generally between 1 and 11 m/day.210Pb and210Po concentrations are seasonally dependent, with higher concentrations and slower removal during the early summer (half-removal times from solution onto particles of 1–5 days in winter and up to 2 months in early summer).  相似文献   

8.
Unsupported226Ra (t12 = 1620years) in marine sediments can provide a basis for measuring rates of accumulation of the order of centimeters per thousand years. The excess radium apparently enters the sediments incorporated in phytoplankton. The sensitivity of the method depends upon the initial value of the unsupported226Ra and of the value of230Th, a parent of226Ra, in the sedimentary components.226Ra dating was applied to a sediment taken from the slope of the San Clemente Basin in the Southern California coastal region. Rates of sedimentation over two half-lives of the nuclide were found to be either 5.2 or 5.3 cm/1000 years depending upon which of two models for the geochronology is used. One model assumes that the230Th brings to the deposit an amount of226Ra in equilibrium with it. The other is based upon the growth of the226Ra from the230Th in the sedimentary components.238+239Pu and210Pb levels in the upper strata indicated sedimentation rates of the order of 100–500 cm/1000 years, i.e. much faster accumulations. We suggest these derived rates are spurious and reflect bioturbative activities of surface-living organisms.  相似文献   

9.
A model that predicts the flux of222Rn out of deep-sea sediment is presented. The radon is ultimately generated by230Th which is stripped from the overlying water into the sediment. Data from many authors are compared with the model predictions. It is shown that the continental contribution of ionium is not significant, and that at low sedimentation rates, biological mixing and erosional processes strongly affect the surface concentration of the ionium. Two cores from areas of slow sediment accumulation, one from a manganese nodule region of the central Pacific and one from the Rio Grande Rise in the Atlantic were analyzed at closely spaced intervals for230Th,226Ra, and210Pb. The Pacific core displayed evidence of biological mixing down to 12 cm and had a sedimentation rate of only 0.04 cm/kyr. The Atlantic core seemed to be mixed to 8 cm and had a sedimentation rate of 0.07 cm/kyr. Both cores had less total excess230Th than predicted.Radium sediment profiles are generated from the230Th model. Adsorbed, dissolved, and solid-phase radium is considered. According to the model, diffusional losses of radium are especially important at low sedimentation rates. Any particulate, or excess radium input is ignored in this model. The model fits the two analyzed cores if the fraction of total radium available for adsorption-desorption is about 0.5–0.7, and ifK, the distribution coefficient, is about 1000.Finally, the flux of radon out of the sediments is derived from the model-generated radium profiles. It is shown that the resulting standing crop of222Rn in the overlying water may be considered as an added constraint in budgeting230Th and226Ra in deep-sea sediments.  相似文献   

10.
A fiber extraction technique is used to concentrate Ra and Th isotopes from 1000 liters or more of seawater. Natural226Ra and234Th are used as yield tracers. In the equatorial Pacific the228Ra activity of surface water varies from 20 to 1 dpm/1000 kg and generally decreases away from continental shelf areas. Across the Peru Current System, this decrease is modeled as one-dimensional diffusion and indicates the possibility of two flow regimes with distinct characteristic mixing lengths and apparent eddy diffusivities of 105 and 107 cm2/s. The perturbing effects of advection and equatorial upwelling west of the Galapagos Islands are noted. Off the coast of Southern California a vertical228Ra distribution gives an apparent diffusivity of 1.6 cm2/s for the upper thermocline.226Ra concentrations near the coast appear to be higher than the open ocean values at comparable depths, which may reflect supply of this isotope from continental shelf sediments and/or upwelling. The insoluble daughter/soluble parent activity ratios228Th/228Ra and234Th/238U in the equatorial Pacific surface water display latitudinal trends which may be correlated with productivity variations. Near the coast of California these ratios reflect the differing oceanographic conditions north and south of Pt. Conception indicating a mean chemical removal time constant on the order of 4 months for Th and other highly reactive elements within the Southern California Bight. The232Th content of seawater sampled is less than 0.1 μg/1000 1; most of the published values for seawater232Th could well be too high. A comparison of the two methods of determining228Ra (via228Ac and via228Th) made on 64 seawater samples shows that the time delay required by the228Th method is more than compensated by its better analytical simplicity and precision.  相似文献   

11.
In the past decades, the floods of the Yangtze and Yellow River introduced unexpected changes of the ecological community and sedimentary dynamics in the East China Sea (ECS). To reconstruct the flood events in the ECS, 228Th, 230Th and 232Th have been examined in a sediment core. The specific activities of three thorium isotopes have good positive relations with fine fractions (〈63 μm), indicating that Th activity concentrations heavily depend upon the sediment grain size. The size-normalized activities of 228Th, 23-Th and 232Th showed significant variations. Coincidences between the higher Th activities and historical floods of the Yangtze and Yellow River demonstrated that size-normalized Th recorded the two rivers' flood events. The activity ratios of thorium isotopes, i.e. 230Th/232Th and 228Th/232Th, also showed similar patterns to the historical river floods. In three periods (1740s, 1840-1860s and 1930-1960s), characterized by frequent floods, the thorium activity ratios were fairly low and close to the Yangtze and Yellow River estuary sediments, coinciding with the less oceanic 228Th and 230Th contributions during the flooding periods. Accordingly, these results support the size-normalized Th activity and thorium ratios as proxies of the river floods in coastal seas.  相似文献   

12.
The uranium and thorium decay series nuclides in Mt. St. Helens effusives   总被引:1,自引:0,他引:1  
The concentrations of the radionuclides238U,230Th,226Ra,210Pb,210Po,232Th,228Ra and228Th and the abundances of major elements were determined in samples from all major eruptions of Mt. St. Helens from May 18, 1980 through June 21, 1981. During this time the effusives changed from plagioclase-phyric dacite to a more andesitic composition but the concentrations of U and Th series nuclides were measurably invariant. The average232Th/238U weight ratio in the rocks is 2.4 and the230Th/232Th activity ratio equals the238U/232Th activity ratio indicating no fractionation of U from Th during magma genesis.226Ra activity is in excess (~40% on average) of its parent230Th whereas228Ra is in radioactive equilibrium with its parent232Th, constraining the time of magma formation between 30 and 104 years prior to eruption. The210Pb/226Ra activity ratios in the samples average 1.0, with a 20% scatter on either side, but allowing for volatile210Pb loss at time of eruption excess210Pb over226Ra is inferred, indicating that the time of magma formation was within the last 150 years.210Po was virtually absent in the samples immediately after eruption, indicating its total loss by volatilization during eruption. The quantity of210Po volatilized during the May 18, 1980 event is estimated to be in the range of 300 Ci from the effusives and as much as 5000 Ci total including losses from heated slide material. The222Rn activity volatilized should have been comparable to the210Po activity released.  相似文献   

13.
The first224Ra (t1/2 = 3.64days) measurements from mixing zones of estuarine systems are presented for the Pee Dee River-Winyah Bay and Delaware Bay Estuaries. High-resolution gamma-ray spectrometry was used to determine224Ra,228Ra (t1/2 = 5.7years), and226Ra (t1/2 = 1622years) activity ratios. Desorption and diffusion from suspended and bottom sediments contributes to the non-conservative increases of the three isotopes in each systems. In Delaware Bay224Ra concentrations were nearly constant over the 2.5‰ to 15‰ salinity range where two turbidity maximum zones are located.228Th scavenging onto the suspended particles in the turbid zones may supply a regenerative source of224Ra in this system. Samples collected on the ebb and flood tide from a salt marsh along Delaware Bay have a 5-fold increase in224Ra from flood to ebb and 3- and 2-fold increases for228Ra and226Ra respectively, indicating salt marshes are another source of radium to estuarine waters.  相似文献   

14.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Here we investigate the feasibility of using alpha-spectrometric 226Ra methodology to date low U freshwater carbonate deposits (<0.1 μg g−1) by analysing Holocene freshwater travertine deposits from Esanatoglia, Umbro-Marchean Apennines, Central Italy. Previously, such methods have been tested on hydrothermal deposits, which are characterised by high Ra and U. We calculate a 226Ra age estimate of 2.9±0.4 ka (1σ) for Holocene travertine that is in reasonable agreement with archaeological evidence by assuming that the 226Ra initial activity of the Holocene travertine is comparable with that of present-day carbonate deposits in the same area. We also investigate the use of Ba to normalise 226Ra activities. Comparison of age estimates based on Ra methods with ages derived from alpha-spectrometric 230Th/234U isochron techniques for the same co-eval sub-samples indicates that, where only alpha-spectrometric methods are available, the former are likely to be much more useful for Holocene travertine material, especially if there is a significant detrital component.  相似文献   

17.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Three ferromanganese nodules handpicked from the tops of 2500 cm2 area box cores taken from the north equatorial Pacific have been analysed for their U-Th series nuclides.230Thexc concentrations in the surface 1–2 mm of the top side of the nodules indicate growth rates of 1.8–4.6 mm/106 yr. In two of the nodules a significant discontinuity in the230Thexc depth profile has been observed at ~0.3 m.y. ago, suggesting that the nodule growth has been episodic. The concentration profiles of231Paexc (measured via227Th) yield growth rates similar to the230Thexc data. The bottom sides of the nodules display exponential decrease of230Thexc/232Th activity ratio with depth, yielding growth rates of 1.5–3.3 mm/106 yr.The230Thexc and231Paexc concentrations in the outermost layer of the bottom face are significantly lower than in the outermost layer of the top face. Comparison of the extrapolated230Thexc/232Th and230Thexc/231Paexc activity ratios for the top and bottom surfaces yields an “age” of (5?15) × 104 yr for the bottom relative to the top. This “age” most probably represents the time elapsed since the nodules have attained the present orientation.The210Pb concentration in the surface ~0.1 mm of the top side is in large excess over its parent226Ra. Elsewhere in the nodule, up to ~1 mm depth in both top and bottom sides,210Pb is deficient relative to226Ra, probably due to222Rn loss. The absence of210Pbexc below the outermost layer of the top face rules out the possibility of a sampling artifact as the cause of the observed exponentially decreasing230Thexc and231Paexc concentration profiles. The flux of210Pbexc to the nodules ranges between 0.31 and 0.58 dpm/cm2 yr. The exhalation rate of222Rn, estimated from the226Ra-210Pb disequilibrium is ~570 dpm/cm2 yr from the top side and >2000 dpm/cm2 yr from the bottom side.226Ra is deficient in the top side relative to230Th up to ~0.5–1 mm and is in large excess throughout the bottom. The data indicate a net gain of226Ra into the nodule, corresponding to a flux of (24?46) × 10?3 dpm/cm2 yr. On a total area basis the gain of226Ra into the nodules is <20% of the226Ra escaping from the sediments. A similar gain of228Ra into the bottom side of the nodules is reflected by the high228Th/232Th activity ratios observed in the outermost layer in contact with sediments.  相似文献   

19.
Natural concentrations of 238U and δ234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land–sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates.On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0–16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (1 m) zones of Fe(III)—and, to a lesser degree, Mn(IV)—reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in δ234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the δ234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched δ234U values represent a riverine surface complexation product that is actively involved in Mn–Fe diagenetic cycles and surface complexation reactions.In the Fly River estuary, 238U appears to exhibit a reasonably conservative distribution as a function of salinity. The absence of observed U removal does not necessarily imply non-reactivity, but instead may record an integration of concurrent U removal and release processes. There is not a linear correlation between δ234U vs. 1/238U that would imply simple two component mixing. It is likely that resuspension of bottom sediments, prolonged residence times in the lower reaches of the Fly River, and energetic particle–colloid interactions contribute to the observed estuarine U distribution. The supply of uranium discharged from humid, tropical river systems to the sea appears to be foremost influenced by particle/water interactions that are ultimately governed by the particular physiographic and hydrologic characteristics of an estuary.  相似文献   

20.
From previously published 14C and K–Ar data, the age of formation of Lake Nyos maar in Cameroon is still in dispute. Lake Nyos exploded in 1986, releasing CO2 that killed 1750 people and over 3000 cattle. Here we report results of the first measurements of major elements, trace elements and U-series disequilibria in ten basanites/trachy-basalts and two olivine tholeiites from Lake Nyos. It is the first time tholeiites are described in Lake Nyos. But for the tholeiites which are in 238U–230Th equilibrium, all the other samples possess 238U–230Th disequilibrium with 15 to 28% enrichment of 230Th over 238U. The (226Ra/230Th) activity ratios of these samples indicate small (2 to 4%) but significant 226Ra excesses. U–Th systematics and evidence from oxygen isotopes of the basalts and Lake Nyos granitic quartz separates show that the U-series disequilibria in these samples are source-based and not due to crustal contamination or post-eruptive alteration. Enrichment of 230Th is strong prima facie evidence that Lake Nyos is younger than 350 ka. The 230Th–226Ra age of Nyos samples calculated with the (226Ra/230Th) ratio for zero-age Mt. Cameroon samples is 3.7 ± 0.5 ka, although this is a lower limit as the actual age is estimated to be older than 5 ka, based on the measured mean 230Th/238U activity ratio. The general stability of the Lake Nyos pyroclastic dam is a cause for concern, but judging from its 230Th–226Ra formation age, we do not think that in the absence of a big rock fall or landslide into the lake, a big earthquake or volcanic eruption close to the lake, collapse of the dam from erosion alone is as imminent and alarming as has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号