首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Sublimation from thin snow cover at the edge of the Eurasian cryosphere in Mongolia was calculated using the aerodynamic profile method and verified by eddy covariance observations using multiple‐level meteorological data from three sites representing a variety of geographic and vegetative conditions in Mongolia. Data were collected in the winter and analysed from three sites. Intense sublimation events, defined by daily sublimation levels of more than 0·4 mm, were predominant in their effect on the temporal variability of sublimation. The dominant meteorological elements affecting sublimation were wind speed and air temperature, with the latter affecting sublimation indirectly through the vapour deficit. Seasonal and interannual variations in sublimation were investigated using long‐interval estimations for 19 years at a mountainous‐area meteorological station and for 24 years at a flat‐plain meteorological station. The general seasonal pattern indicated higher rates of sublimation in both the beginning and ending of the snow‐covered period, when the wind speed and vapour deficit were higher. Annual sublimation averaged 11·7 mm at the flat‐plain meteorological station, or 20·3% of the annual snowfall, and 15·7 mm at the site in the mountains, or 21·6% of snowfall. The sum of snow sublimation and snowmelt evaporation represented 17 to 20% of annual evapotranspiration in a couple observation years. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Precipitation plays an important role in permafrost hydrology; it can alter the hydrothermal condition of the active layer and even influence the permafrost aggradation or degradation. Moisture recycling from evaporation and transpiration can greatly contribute to local precipitation in some regions. This study selected four monitoring sites and used an isotope mixing model to investigate local moisture recycling in permafrost regions of the central Qinghai-Tibet Plateau (QTP). The results showed that the local water vapour flux in the summer and autumn were dominantly influenced by westerlies and the Indian monsoon. Moistures for precipitation in Wudaoliang (WDL) and Fenghuoshan (FHS) mainly came from the western QTP, eastern Tianshan Mountains, western Qilian Mountains, and the surrounding regions. In comparsion, more than half of precipitation at Tanggula (TGL) was mostly sourced from the Indian monsoon. Local moisture recycling ratios at the four sites ranged from 14% ± 3.8% to 31.6% ± 4.8%, and depended on the soil moisture and relative humidity. In particular, the higher soil moisture and relative humidity promoted local moisture recycling, but frozen ground might be a potential influencing factor as well. The moisture recycling ratios of the study area were consistent with the results from both the Qinghai Lake Basin and the Nam Co Basin, but differed from those of the northwestern QTP. This difference may indirectly confirm the great spatial variability in precipitation on the QTP. Moreover, the rising air temperature and ground temperature, increasing precipitation, higher soil moisture, higher vegetation cover, and expanding lakes in the study area may be conductive to enhancing future local moisture recycling by altering ground surface conditions and facilitating the land surface evaporation and plant transpiration.  相似文献   

4.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
6.
We attempted to clarify the runoff characteristics of a permafrost watershed in the southern mountainous region of eastern Siberia using hydrological and meteorological data obtained by the State Hydrological Institute in Russia from 1976 to 1985. We analysed seasonal changes in the direct runoff ratio and recession gradient during the permafrost thawing period. Thawing depth began to increase from the beginning of May and continued to increase until the end of September, exceeding 150 cm. Annual precipitation and discharge were in the range 525–649 mm and 205–391 mm respectively. The sum of the annual evapotranspiration and changes in water storage ranged from 235 to 365 mm. The mean daily evapotranspiration in June, July, August and September was 1·5 mm day?1, 1·7 mm day?1, 1·5 mm day?1, and 0·5 mm day?1 respectively. The direct runoff ratio was highest in June, decreasing from 0·8 in June to 0·2 in September. The recession gradient also decreased from June to September. Since the frozen soil functioned as an impermeable layer, the soil water storage capacity in the thawing part of the soil, the depth of which changed over time, controlled the runoff characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Observations of soil moisture and salt content were conducted from May to August at Neleger station in eastern Siberia. Seasonal changes of salt and soil moisture distribution in the active layer of larch forest (undisturbed) and a thermokarst depression known as an alas (disturbed) were studied. Electric conductivity ECe of the intact forest revealed higher concentrations that increased with depth from the soil surface into the active layer and the underlying permafrost: 1 mS cm?1 at 1·1 m, to 2·6 mS cm?1 at 160 cm depth in the permafrost. However, a maximum value of 5·4 mS cm?1 at 0·6 m depth was found in the dry area of the alas. The concentration of ions, especially Na+, Mg2+, Ca2+, SO42? and HCO3? in the upper layers of this long‐term disturbed site, indicates the upward movement of ions together with water. A higher concentration of solutes was found in profiles with deeper seasonal thawing. The accumulation of salts in the alas occurs from spring through into the growing season. The low concentration of salt in the surface soil layers appears to be linked to leaching of salts by rainfall. There are substantial differences between water content and electric conductivity of soil in the forest and alas. Modern salinization of the active layer in the alas is epigenetic, and it happens in summer as a result of spring water collection and high summer evaporation; the gradual salt accumulation in the alas in comparison with the forest is controlled by the annual balance of water and salts in the active layer. Present climatic trends point to continuous permafrost degradation in eastern Siberia increasing the risk of surface salinization, which has already contributed to changing the landscape by hindering the growth of forest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Evaporation dominates the water balance in arid and semi‐arid areas. The estimation of evaporation by land‐cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance evaporation estimates to satellite‐derived radiometric surface temperature. The method is applied to a heterogeneous landscape in the Krishna River basin in south India using 10‐day composites of NOAA advanced very high‐resolution radiometer satellite imagery. The surface temperature predicts the difference between reference evaporation and modelled actual evaporation well in the four catchments (r2 = 0·85 to r2 = 0·88). Spatial and temporal variations in evaporation are linked to vegetation type and irrigation. During the monsoon season (June–September), evaporation occurs quite uniformly over the case‐study area (1·7–2·1 mm day?1), since precipitation is in excess of soil moisture holding capacity, but it is higher in irrigated areas (2·2–2·7 mm day?1). In the post‐monsoon season (December–March) evaporation is highest in irrigated areas (2·4 mm day?1). A seemingly reasonable estimate of temporal and spatial patterns of evaporation can be made without the use of more complex and data‐intensive methods; the method also constrains satellite estimates of evaporation by the annual water balance, thereby assuring accuracy at the seasonal and annual time‐scales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Water temperature is an important determinant of the growth and development of malaria mosquito immatures. To gain a better understanding of the daily temperature dynamics of malaria mosquito breeding sites and of the relationships between meteorological variables and water temperature, three clear water pools (diameter × depth: 0·16 × 0·04, 0·32 × 0·16 and 0·96 × 0·32 m) were created in Kenya. Continuous water temperature measurements at various depths were combined with weather data collections from a meteorological station. The water pools were homothermic, but the top water layer differed by up to about 2 °C in temperature, depending on weather conditions. Although the daily mean temperature of all water pools was similar (27·4–28·1 °C), the average recorded difference between the daily minimum and maximum temperature was 14·4 °C in the smallest versus 7·1 °C in the largest water pool. Average water temperature corresponded well with various meteorological variables. The temperature of each water pool was continuously higher than the air temperature. A model was developed that predicts the diurnal water temperature dynamics accurately, based on the estimated energy budget components of these water pools. The air–water interface appeared the most important boundary for energy exchange processes and on average 82–89% of the total energy was gained and lost at this boundary. Besides energy loss to longwave radiation, loss due to evaporation was high; the average estimated daily evaporation ranged from 4·2 mm in the smallest to 3·7 mm in the largest water pool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Minha Choi 《水文研究》2012,26(4):597-603
In the past few decades, there have been great developments in remotely sensed soil moisture, with validation efforts using land surface models (LSMs) and ground‐based measurements, because soil moisture information is essential to understanding complex land surface–atmosphere interactions. However, the validation of remotely sensed soil moisture has been very limited because of the scarcity of the ground measurements in Korea. This study validated Advanced Microwave Scanning Radiometer E (AMSR‐E) soil moisture data with the Common Land Model (CLM), one of the most widely used LSMs, and ground‐based measurements at two Korean regional flux monitoring network sites. There was reasonable agreement regarding the different soil moisture products for monitoring temporal trends except National Snow and Ice Data Centre (NSIDC) AMSR‐E soil moisture, albeit there were essential comparison limitations by different spatial scales and soil depths. The AMSR‐E soil moisture data published by the National Aeronautics and Space Administration and Vrije Universiteit Amsterdam (VUA) showed potential to replicate temporal variability patterns (root‐mean‐square errors = 0·10–0·14 m3 m?3 and wet BIAS = 0·09 ? 0·04 m3 m?3) with the CLM and ground‐based measurements. However, the NSIDC AMSR‐E soil moisture was problematic because of the extremely low temporal variability and the VUA AMSR‐E soil moisture was relatively inaccurate in Gwangneung site characterized by complex geophysical conditions. Additional evaluations should be required to facilitate the use of recent and forthcoming remotely sensed soil moisture data from Soil Moisture and Ocean Salinity and Soil Moisture Active and Passive missions at representative future validation sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

15.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
C. L. I. Ho  C. Valeo 《水文研究》2005,19(2):459-473
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号