首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event‐based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ~300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha?1 and 0·3–4·8 t ha?1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha?1 and 0·003–0·3 t ha?1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially‐targeted farm‐level management planning using national or catchment‐based agri‐environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this study was to determine and discuss field‐scale phosphorus losses via subsurface tile drains. A total phosphorous (Tot‐P) export, which averaged 0·29 kg ha−1 year−1, was measured over a six‐year period from the 4·43 ha drainage system of a Eutric Cambisol in Central Sweden. The main part (63%) was in particulate form (PP) while the remainder was either in phosphate form (PO4‐P) or in other dissolved or colloidal forms. A very small area, less than 1% of the soil surface, was demonstrated to be hydraulically active by using a staining technique in soil monoliths taken from the field. The stained macropores were few, but were continuous downward, and were relatively evenly distributed among the eight 7 dm2 areas that were investigated. The transport from the field mainly occurred in episodes during which the relationship between phosphorus concentration and discharge was characterized by hysteresis loops. On average, half of the yearly P transport occurred in 140 hours. Compared with flow‐proportional and frequent sampling, manual and fortnightly sampling underestimated the transport of Tot‐P and suspended solids (SS) by 59 and 42%, respectively, during the six years studied. Amounts of different phosphorus forms exported through the tile drains were very similar to those reported from other clay soils in Northern Europe and North America. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Phosphorus (P) export from agricultural lands above known threshold levels can result in adverse impacts to receiving water quality. Phosphorus loss occurs in dissolved and sediment‐bound, or particulate phosphorous (PP), forms, with the latter often dominating losses from row‐cropped systems. To target practices, land managers need good computer models and model developers need good monitoring data. Sediment monitoring data (e.g. radiometric finger printing and sediment P sorption capacity) can help identify sediment source areas and improve models, but require more sediment mass than is typically obtained by automatic sampling. This study compares a simple suspended sediment sampler developed at the University of Exeter (UE) with automatic sampling in intermittent channels draining corn and alfalfa fields. The corn field had a greater runoff coefficient (27%) than alfalfa (11%). No differences were found in enrichment ratios (sediment constituent/soil constituent) in PP (PPER) or percent loss on ignition (LOIER) between paired UE samplers on corn. The median LOIER for the UE samplers (1·9%) did not differ significantly (p > 0·13) from the automatic sampler (2·0%). The PPER from the UE samplers was on average 20% lower than the automatic samplers. A correlation (r2 = 0·75) was found between sediment PP and % LOI from automatic samplers and UE samplers for particles < 50 µm, while for > 50 µm PP concentration did not change with changes in % LOI. Sediment ammonium‐oxalate extractable metals were similarly related to LOI, with the strongest correlation for iron (r2 = 0·71) and magnesium (r2 = 0·70). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The hydrology of oxygen‐18 (18O) isotopes was monitored between 1995 and 1998 in the Allt a' Mharcaidh catchment in the Cairngorm Mountains, Scotland. Precipitation (mean δ18O=−7·69‰) exhibited strong seasonal variation in δ18O values over the study period, ranging from −2·47‰ in the summer to −20·93‰ in the winter months. As expected, such variation was substantially damped in stream waters, which had a mean and range of δ18O of −9·56‰ and −8·45 to −10·44‰, respectively. Despite this, oxygen‐18 proved a useful tracer and streamwater δ18O variations could be explained in terms of a two‐component mixing model, involving a seasonally variable δ18O signature in storm runoff, mixing with groundwater characterized by relatively stable δ18O levels. Variations in soil water δ18O implied the routing of depleted spring snowmelt and enriched summer rainfall into streamwaters, probably by near‐surface hydrological pathways in peaty soils. The relatively stable isotope composition of baseflows is consistent with effective mixing processes in shallow aquifers at the catchment scale. Examination of the seasonal variation in δ18O levels in various catchment waters provided a first approximation of mean residence times in the major hydrological stores. Preliminary estimates are 0·2–0·8 years for near‐surface soil water that contributes to storm runoff and 2 and >5 years for shallow and deeper groundwater, respectively. These 18O data sets provide further evidence that the influence of groundwater on the hydrology and hydrochemistry of upland catchments has been underestimated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Grazing is common in the foothills fescue grasslands and may influence the seasonal soil‐water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil‐water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub‐station in the foothills of south‐western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996–97. The watersheds were subjected to no grazing (control), heavy grazing (2·4 animal unit months (AUM) per hectare) or very heavy grazing (4·8 AUM ha?1). Soil‐water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil‐water data and resulted in Nash–Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0·77 and 0·85, respectively. Model graphical and statistical evaluation was conducted using the soil‐water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0·70, r2 of 0·72 and a root mean square error (RMSE) of 18·01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil‐water simulation were in the following order; available water capacity > bulk density > runoff curve number > fraction of field capacity (FFCB) > saturated hydraulic conductivity. Thus these data were critical inputs to ensure reasonable simulation of soil‐water patterns. Overall, the model performed satisfactorily in simulating soil‐water patterns in all three watersheds with a daily time‐step and indicates a great potential for monitoring soil‐water resources in small watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Frequent algal blooms in surface water bodies caused by nutrient loading from agricultural lands are an ongoing problem in many regions globally. Tile drains beneath poorly and imperfectly drained agricultural soils have been identified as key pathways for phosphorus (P) transport. Two tile drains in an agricultural field with sandy loam soil in southern Ontario, Canada were monitored over a 28‐month period to quantify discharge and the concentrations and loads of dissolved reactive P (DRP) and total P (TP) in their effluent. This paper characterizes seasonal differences in runoff generation and P export in tile drain effluent and relates hydrologic and biogeochemical responses to precipitation inputs and antecedent soil moisture conditions. The generation of runoff in tile drains was only observed above a clear threshold soil moisture content (~0.49 m3·m?3 in the top 10 cm of the soil; above field capacity and close to saturation), indicating that tile discharge responses to precipitation inputs were governed by the available soil‐water storage capacity of the soil. Soil moisture content approached this threshold throughout the non‐growing season (October – April), leading to runoff responses to most events. Concentrations of P in effluent were variable throughout the study but were not correlated with discharge (p > 0.05). However, there were significant relationships between discharge volume (mm) and DRP and TP loads (kg ha?1) for events occurring over the study period (R2 ≥ 0.49, p ≤ 0.001). This research has shown that the hydrologic and biogeochemical responses of tile drains in a sandy loam soil can be predicted to within an order of magnitude from simple hydrometric data such as precipitation and soil moisture once baseline conditions at a site have been determined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study was conducted under the USDA‐Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed in south‐central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the Federal Clean Water Act for sediments and total phosphorus. The USDA‐CEAP seeks to quantify environmental benefits of conservation programmes on water quality by monitoring and modelling. Two of the most widely used USDA watershed‐scale models are Annualized AGricultural Non‐Point Source (AnnAGNPS) and Soil and Water Assessment Tool (SWAT). The objectives of this study were to compare hydrology, sediment, and total phosphorus simulation results from AnnAGNPS and SWAT in separate calibration and validation watersheds. Models were calibrated in Red Rock Creek watershed and validated in Goose Creek watershed, both sub‐watersheds of the Cheney Lake watershed. Forty‐five months (January 1997 to September 2000) of monthly measured flow and water quality data were used to evaluate the two models. Both models generally provided from fair to very good correlation and model efficiency for simulating surface runoff and sediment yield during calibration and validation (correlation coefficient; R2, from 0·50 to 0·89, Nash Sutcliffe efficiency index, E, from 0·47 to 0·73, root mean square error, RMSE, from 0·25 to 0·45 m3 s?1 for flow, from 158 to 312 Mg for sediment yield). Total phosphorus predictions from calibration and validation of SWAT indicated good correlation and model efficiency (R2 from 0·60 to 0·70, E from 0·63 to 0·68) while total phosphorus predictions from validation of AnnAGNPS were from unsatisfactory to very good (R2 from 0·60 to 0·77, E from ? 2·38 to 0·32). The root mean square error–observations standard deviation ratio (RSR) was estimated as excellent (from 0·08 to 0·25) for the all model simulated parameters during the calibration and validation study. The percentage bias (PBIAS) of the model simulated parameters varied from unsatisfactory to excellent (from 128 to 3). This study determined SWAT to be the most appropriate model for this watershed based on calibration and validation results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Excessive application of poultry litter to pastures in the Sand Mountain region of north Alabama has resulted in phosphorus (P) contamination of surface water bodies and buildup of P in soils of this region. Since surface runoff is recognized as the primary mechanism of P transport, understanding surface runoff generation mechanisms are crucial for alleviating water quality problems in this region. Identification of surface runoff generation mechanisms is also important for delineation of hydrologically active areas (HAAs). Therefore, the specific objective of this study was to identify surface runoff generation mechanisms (infiltration excess versus saturation excess) using distributed surface and subsurface sensors and rain gauge. Results from three rainfall events (2·13–3·43 cm) of differing characteristics, and sensor data at four locations with differing soil hydraulic properties along the hillslope showed that the main surface runoff generation mechanism in this region is infiltration excess. Because of this, rainfall intensity and soil hydraulic conductivity were found to play dominant roles in surface runoff generation in this region. Further, only short periods of a few rainfall events during which the rainfall intensity is high produce surface runoff. This study indicates that perhaps subsurface flows and transport of P in subsurface flows need to be quantified to reduce P contamination of surface water bodies in this region. Current studies at this location are identifying spatial and temporal distribution of HAAs, quantifying rainfall characteristics that generate runoff, and estimating runoff volume that results from connected HAAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We attempted to clarify the runoff characteristics of a permafrost watershed in the southern mountainous region of eastern Siberia using hydrological and meteorological data obtained by the State Hydrological Institute in Russia from 1976 to 1985. We analysed seasonal changes in the direct runoff ratio and recession gradient during the permafrost thawing period. Thawing depth began to increase from the beginning of May and continued to increase until the end of September, exceeding 150 cm. Annual precipitation and discharge were in the range 525–649 mm and 205–391 mm respectively. The sum of the annual evapotranspiration and changes in water storage ranged from 235 to 365 mm. The mean daily evapotranspiration in June, July, August and September was 1·5 mm day?1, 1·7 mm day?1, 1·5 mm day?1, and 0·5 mm day?1 respectively. The direct runoff ratio was highest in June, decreasing from 0·8 in June to 0·2 in September. The recession gradient also decreased from June to September. Since the frozen soil functioned as an impermeable layer, the soil water storage capacity in the thawing part of the soil, the depth of which changed over time, controlled the runoff characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Application of snowmelt runoff model for water resource management   总被引:1,自引:0,他引:1  
Snow‐covered areas (SCAs) are the fundamental source of water for the hydrological cycle for some region. Accurate measurements of river discharge from snowmelt can help manage much needed water required for hydropower generation and irrigation purposes. This study aims to apply the snowmelt runoff model (SRM) in the Upper Indus basin by the Astore River in northern Pakistan for the years 2000 to 2006. The Shuttle Radar Topographic Mission (SRTM) data are used to generate the Digital Elevation Model (DEM) of the region. Various variables (snow cover depletion curves (SCDCs), temperature and precipitation) and parameters (degree‐day factor, recession coefficient, runoff coefficients, time lag, critical temperature and temperature lapse rate) are used as input in the SRM. However, snow cover data are direct and an important input to the SRM. Satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate the SCA. Normalized difference snow index (NDSI) algorithm is applied for snow cover mapping and to differentiate snow from other land features. Nash–Sutcliffe coefficient of determination (R2) and volume difference (DV) are used for quality assessment of the SRM. The results of the current research show that for the study years (2000–2006), the average value of R2 is 0·87 and average volume difference DV is 1·18%. The correlation coefficient between measured and computed runoff is 0·95. The results of the study further show that a high level of accuracy can be achieved during the snowmelt season. The simulation results endorse that the SRM in conjunction with MODIS snow cover product is very useful for water resource management in the Astore River and can be used for runoff forecasts in the Indus River basin in northern Pakistan. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
High‐resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, nonlinear model to estimate 30‐year means of monthly snowpack and snowmelt throughout Oregon. Precipitation and temperature for the period 1971–2000, derived from 400‐m resolution PRISM data, and potential evapotranspiration (estimated from temperature and day length) drive the model. The model was calibrated using mean monthly data from 45 SNOTEL sites and accurately estimated snowpack at 25 validation sites: R2 = 0·76, Nash‐Sutcliffe Efficiency (NSE) = 0·80. Calibrating it with data from all 70 SNOTEL sites gave somewhat better results (R2 = 0·84, NSE = 0·85). We separately applied the model to SNOTEL stations located < 200 and ≥ 200 km from the Oregon coast, since they have different climatic conditions. The model performed equally well for both areas. We used the model to modify moisture surplus (precipitation minus potential evapotranspiration) to account for snowpack accumulation and snowmelt. The resulting values accurately reflect the shape and magnitude of runoff at a snow‐dominated basin, with low winter values and a June peak. Our findings suggest that the model is robust with respect to different climatic conditions, and that it can be used to estimate potential runoff in snow‐dominated basins. The model may allow high‐resolution, regional hydrologic comparisons to be made across basins that are differentially affected by snowpack, and may prove useful for investigating regional hydrologic response to climate change. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

20.
Snow water equivalent was measured during three springs on north‐ and south‐exposed sites representing a range of stand structure and development stages of Quebec's balsam fir forest. Maximum snow water equivalent of the season, mean seasonal snowmelt rate, snowmelt season duration and total snowmelt season degree‐day factor were related to canopy height, canopy density, light interception fraction and basal area of the stands using random coefficient models. Seasonal mean snowmelt rate was better explained by stand characteristics (R2 from 0·41 to 0·61) than was maximum snow water equivalent (R2 from 0·08 to 0·23). The best relationship was found with light interception, which explained 61% of snowmelt rate variability between stands. These relationships were not significantly affected by stand aspect (Pr ≥ S = 0·14 or higher), as snow dynamics seemed less dependent on aspect than on stand characteristics. Snowmelt recovery rates could be used by forest planners to establish an acceptable time step for the harvesting of different parts of a watershed in order to prevent peak flow augmentations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号