首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the drought signal in both time and space. Analysis is conducted using monthly time series covering the period 1961–1997 for the Pang catchment, UK. The time series include observed rainfall and groundwater recharge, head and discharge simulated by physically-based soil water and groundwater models. Drought events derived separately for each unit area and variable are combined to yield catchment scale drought characteristics. The study reveals relatively large differences in the spatial and temporal characteristics of drought for the different variables. Meteorological droughts cover frequently the whole catchment; and they are more numerous and last for a short time (1–2 months). In comparison, droughts in recharge and hydraulic head cover typically a smaller area and last longer (4–5 months). Hydraulic head and groundwater discharge exhibit similar drought characteristics, which can be expected in a groundwater fed catchment. Deficit volume is considered a robust measure of the severity of a drought event over the catchment area for all variables; whereas, duration is less sensitive, particular for rainfall. Spatial variability in drought characteristics for groundwater recharge, head and discharge are primarily controlled by catchment properties. It is recommended not to use drought area separately as a measure of drought severity at the catchment scale, rather it should be used in combination with other drought characteristics like duration and deficit volume.  相似文献   

2.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   

3.
The anomalous entrance of water into groundwater systems can affect storage throughout long periods and normally relies on infrequent and irregular pulses of groundwater recharge defined by the term episodic recharge. Recently there was a groundwater recharge of large magnitude with unknown circumstances in the Caiuá aquifer. This unique event was explored in detail here and allowed to better understand the occurrence of such events in humid subtropical climates in South America. For this study, groundwater monitoring daily data from the Integrated Groundwater Monitoring Network was used combined with a specific yield obtained from geophysical wireline logging to obtain groundwater recharge rates. To improve the investigation, we also used a baseflow separation method to obtain the groundwater contribution into local rivers. The groundwater storage variations were also assessed by remote sensing with the GRACE data. Results showed the importance of high soil moisture storage on the occurrence of large episodic recharge events. We estimated that the groundwater recharger volumes derived from 1 year that included the unique episodic recharge observed (total of 866 mm for April 2015–March 2016) were comparable with the sum of 7 years of groundwater recharge (total of 867 mm). Atypical rainfall in winter periods were responsible for the increase in soil moisture that explained that unique event. GRACE-based GWS showed concordance detecting the occurrence of the unique episodic recharge. However, the variation in terms of volumes obtained by GRACE does not represent the behaviour observed in the aquifer by the WTF method. The results also indicated that changes in aquifer storage caused by episodic recharge events directly affect low flows in rivers over long periods. The main knowledge gap addressed here relates to exploring a unique episodic recharge event quite rare to observe with its long-term impacts on hydroclimatic variability over a humid subtropical portion of the Caiuá aquifer.  相似文献   

4.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river.  相似文献   

6.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

7.
If the nature of groundwater sources and sinks can be determined or predicted, the data can be used to forecast natural aquifer discharge. We present a procedure to forecast the relative contribution of individual aquifer sources and sinks to natural aquifer discharge. Using these individual aquifer recharge components, along with observed aquifer heads for each January, we generate a 1‐year, monthly spring discharge forecast for the upcoming year with an existing numerical model and convolution. The results indicate that a forecast of natural aquifer discharge can be developed using only the dominant aquifer recharge sources combined with the effects of aquifer heads (initial conditions) at the time the forecast is generated. We also estimate how our forecast will perform in the future using a jackknife procedure, which indicates that the future performance of the forecast is good (Nash‐Sutcliffe efficiency of 0.81). We develop a forecast and demonstrate important features of the procedure by presenting an application to the Eastern Snake Plain Aquifer in southern Idaho.  相似文献   

8.
Managed aquifer recharge is used to augment groundwater resources and provide resiliency to water supplies threatened by prolonged droughts. It is important that recharge facilities operate at their maximum efficiency to increase the volume of water stored for future use. In this study, we evaluate the use of distributed temperature sensing (DTS) technology as a tool to measure high-resolution infiltration rates at a large-scale recharge facility. Fiber optic cable was laid out inside a spreading basin in a spiral pattern, at two different depths. The cables measured the propagation of diurnal surface water temperature oscillations into the basin depth. The rate of heat propagation is proportional to the velocity of the water, making it possible to estimate the infiltration rate from the temperature measurements. Our results showed that the infiltration rate calculated from DTS, averaged over the entire basin, was within 5% of the infiltration rate calculated using a conventional metering method. The high-resolution data obtained from DTS, both spatially and temporally, revealed heterogeneous infiltration rates throughout the basin; furthermore, tracking the evolution of infiltration rates over time revealed regions with consistently high infiltration rates, regions with consistently low infiltration rates, and regions that evolved from high to low rates, which suggested clogging within that region. Water utilities can take advantage of the high-resolution information obtained from DTS to better manage recharge basins and make decisions about cleaning schedule, frequency, and extent, leading to improved basin management strategies, reduced O&M costs, and increased groundwater recharge.  相似文献   

9.
Two small experimental catchments were established in the south-west of Western Australia to study the effects of logging and subsequent regeneration on the mechanism of streamflow generation. Following a six year pre-treatment calibration period (1976–1981), one catchment (March Road) was logged and reforested in 1982 and the other (April Road South) remained as a control. Logging resulted in an increase in groundwater levels and subsequently groundwater discharge area. The deep, permanent groundwater levels in the valley and upslope areas rose until 1986 and then began to decline. The maximum rise was 5 m in the upslope areas. The duration of shallow, intermittent groundwater system, perched on underlying clay, was extended from 2–3 months in winter before logging to 5–6 months after logging. The shallow groundwater level rose in the valley and began to discharge at the ground surface in 1986. Logging resulted in an increase in streamflow. The maximum increase (≈18% of annual rainfall) was in 1983, one year after logging. The increase in streamflow was due to a substantial decrease in interception and evapotranspiration, increased recharge to the shallow groundwater system, decreased soil moisture deficit and consequently an increase in throughflow. The increase in base flow was about twice that of quick flow. The changes in streamflow and its components in the subsequent years were closely related to the groundwater discharge area. Most of the quick flow was generated as saturation excess overland flow from the groundwater discharge area in the valley. The expansion of the groundwater discharge area, increased soil moisture content, higher groundwater level and the presence of the shallow groundwater system for the extended periods were responsible for the process of streamflow generation.  相似文献   

10.
补给和排泄对井水位变化影响的定量分析   总被引:1,自引:0,他引:1  
根据唐山开平向斜西北翼奥陶系石灰岩水层的水文地质条件,按地下水均衡计划原理计算了含水层地下水的补给量,由补给量和排泄量分析了含水层水位变化幅度。选取水位变化幅度较大时段对湖北省地震局05井和08井进行了计算,比较值与观测值,相差无几,表明水位经值是含水层水层补给和排泄条件变化引起的。  相似文献   

11.
The Mw = 6·3 L'Aquila earthquake on 6 April 2009 produced a mainshock that caused significant changes in the hydrogeology of the Gran Sasso carbonate fractured aquifer: (i) the sudden disappearance at the time of the mainshock of some springs located exactly along the surface trace of the Paganica normal fault (PF); (ii) an immediate increase in the discharge of the Gran Sasso highway tunnel drainages and of other springs and (iii) a progressive increase of the water table elevation at the boundary of the Gran Sasso aquifer during the following months. Using the data collected since the 1990s that include aftershock monitoring as well as data regarding spring discharge, water table elevations, turbidity and rainfall events, a conceptual model of the earthquake's consequences on the Gran Sasso aquifer is proposed herein. In this model that excludes the contribution of seasonal recharge, the short‐term hydrologic effects registered immediately after the mainshock are determined to have been caused by a pore pressure increase related to aquifer deformation. Mid‐term effects observed in the months following the mainshock suggest that there was a change in groundwater hydrodynamics. Supplementary groundwater that flows towards aquifer boundaries and springs in discharge areas reflects a possible increase in hydraulic conductivity in the recharge area, nearby the earthquake fault zone. This increase can be attributed to fracture clearing and/or dilatancy. Simulations by numerical modelling, related to pore pressure and permeability changes with time, show results in accordance with observed field data, supporting the conceptual model and confirming the processes that influenced the answer of the Gran Sasso aquifer to the L'Aquila earthquake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A cross‐sectional model, based on the two dimensional groundwater flow equation of Edelman, was applied at seven transects distributed over four geological cross sections to estimate groundwater heads and recharge from/or groundwater discharge to Lake Nasser. The lake with a length of 500 km and an average width of 12 km was created over the period 1964–1970, the time for constructing the Aswan High Dam (AHD). The model, constrained by regional‐scale groundwater flow and groundwater head data in the vicinity of the lake, was successfully calibrated to timeseries of piezometeric heads collected at the cross sections in the period 1965–2004. Inverse modeling yielded high values for the horizontal hydraulic conductivity in the range of 6.0 to 31.1 m day?1 and storage coefficient between 0.01 and 0.40. The results showed the existence of a strong vertical anisotropy of the aquifer. The calibrated horizontal permeability is systematically higher than the vertical permeability (≈1000:1). The calibrated model was used to explore the recharge from/or groundwater discharge to Lake Nasser at the seven transects for a 40‐year period, i.e. from 1965 to 2004. The analysis for the last 20‐year period, 1985–2004, revealed that recharge from Lake Nasser reduced by 37% compared to the estimates for the first 20‐year period, 1965–1984. In the period 1965–2004, seepage of Lake Nasser to the surrounding was estimated at 1.15 × 109 m3 year?1. This led to a significant rise of the groundwater table. Variance‐based sensitivity and uncertainty analysis on the Edelman results were conducted applying quasi‐Monte Carlo sequences (Latin Hypercube sampling). The maximum standard deviation of the total uncertainty on the groundwater table was 0.88 m at Toshka (west of the lake). The distance from the lake, followed by the storage coefficient and hydraulic conductivity, were identified as the most sensitive parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

14.
This paper studies the effect of drought and pumping discharge on groundwater supplies and marine intrusion. The investigation concerns the Mamora coastal aquifer, northwest of Morocco. A large‐scale groundwater model was established to model (a) the amount of freshwater discharge towards the ocean and the sea water volumes flowing inland as a consequence of the inverse hydraulic gradient, (b) the impact of drought and pumping discharge on the water table level and, as a consequence, on marine water intrusion. In fact, the simulated submarine groundwater discharge (SGWD) would decrease from 864 m3/d/km in 1987 to 425 m3/d/km in 2000. The simulated volumes of sea water intruding the aquifer as a result of inverse hydraulic gradient would increase from 0·25 Mm3/y in 1987 to 0·3 Mm3/y in 2000. As a consequence of a negative rainfall gradient of −5 mm/y, the simulated SGWD would decline to 9 m3/d/km and the sea water intrusion (SWI) would increase to 0·35 Mm3/y since the year 2010. Due to insufficient data on the trend of pumping discharge, a hypothetical increase of this latter from 38·3 Mm3/y to 53·2 Mm3/y is simulated to induce an increase of marine water intrusion from 0·25 Mm3/y to 0·9 Mm3/y. Consequently, to optimally exploit this seemingly fragile coastal aquifer, a plan of future actions to implement is proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The rapid growth of population and agricultural and industrial activities has caused an increase in demand on the Jeffara aquifers of Gabes (southeast Tunisia). In fact, the over-pumping of this aquifer system has resulted in water-level declines ranging from 0.25 to 1 m/year during the past three decades. The aim of this study is to identify favourable artificial recharge sites of this aquifer system based on the combined use of remotely sensed data, a geographic information system (GIS), the Shuttle Radar Topography Mission (SRTM) product and a multiple criteria decision making (MCDM) technique. The delineation of artificial recharge zones shows high to moderate potential for groundwater recharge (40%) in the Gabes region, with high precision of good potential proposed sites. Recharge processes need to account for natural conditions and ecosystems.  相似文献   

16.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   

17.
Tracing groundwater flow in the Borden aquifer using krypton-85   总被引:3,自引:0,他引:3  
Krypton-85 was measured in air, soil gas, and ground water at the Borden aquifer in Ontario in October 1989. The measured specific activities in air and soil gas were 52.0 ± 2.0 and 53.6 ± 1.8 disintegrations per min (dpm) cm−3 krypton. These measurements are in excellent agreement with the global atmospheric trend and demonstrate that krypton-85 enters the water table at the Borden site without a lag in the soil gas reservoir. The krypton-85 specific activity in five groundwater samples ranged from 44.9 to 9.5 dpm cm−3 corresponding to groundwater ages of 2–17 years with a monotonic decrease in specific activity (increase in age) along the groundwater flow path. Travel times calculated from a two-dimensional steady-state model of groundwater flow agree well with the krypton-85 ages in the main recharge region of the aquifer where flow is predominantly vertical, but were 30–40% older than the krypton-85 age downstream of the main recharge area where the flow is mainly horizontal. The effect of dispersion on the distribution of krypton-85 was determined by modelling the transport of krypton-85 in the Borden aquifer with a two-dimensional time-dependent advection dispersion model using the steady-state flow field. Agreement between model specific activity and observed specific activity was excellent for samples in the main recharge region, but the model specific activities were 30–50% lower than observed specific activities in the region of horizontal flow. The differences in travel times and krypton-85 ages and in model krypton-85 and observed krypton-85 specific activities are considered to be small given the heterogeneities that exist in the hydraulic conductivity and aquifer geometry and hence in the groundwater flow field. The model simulated krypton-85 distribution was not sensitive to changes in longitudinal dispersivity and was only weakly sensitive to changes in transverse dispersivity. The geochemical inertness, well-defined source function, and insensitivity to dispersion of krypton-85 allow estimates of groundwater age to be made in a straightforward manner and measurement of krypton-85 can significantly enhance the characterization of groundwater flow in many shallow subsurface systems.  相似文献   

18.
Egypt is currently seeking additional freshwater resources to support national reclamation projects based mainly on the Nubian aquifer groundwater resources. In this study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWSGRACE) along with other relevant datasets was used to monitor and quantify modern recharge and depletion rates of the Nubian aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. Results indicate: (1) the NAE is receiving a total recharge of 20.27 ± 1.95 km3 during 4/2002?2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under excessive precipitation conditions over the Nubian recharge domains and/or under a significant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of ? 13.45 ± 0.82 km3/year during 3/2006–3/2008 period, (4) the observed groundwater depletion is largely related to exceptional drought conditions and/or normal baseflow recession, and (5) a conjunctive surface water and groundwater management plan needs to be adapted to develop sustainable water resources management in the NAE. Findings demonstrate the use of global monthly TWSGRACE solutions as a practical, informative, and cost-effective approach for monitoring aquifer systems across the globe.  相似文献   

19.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Despite the Sahelian drought of the 1970s–1990s, the unconfined aquifer in southwest Niger exhibits a multidecadal increase in groundwater reserves. Recent changes in land surface conditions have enhanced runoff and thus indirect groundwater recharge below endorheic ponds. This paper presents a model-based investigation of surface runoff and groundwater recharge at mesoscale (~5000 km2). A new lumped-conceptual runoff model applicable to the large number of ungauged endorheic catchments is specially developed, derived from an existing fine-scale, physically-based hydrologic model. Runoff simulated for sites identified as groundwater recharge sources are used to derive recharge forcing for a Modflow-based model of the aquifer. The rising water table trend and its spatial distribution over the period 1992–2003 are generally well simulated, albeit smoothed year-to-year dynamics. Comparison with alternative methods of recharge estimation suggests, however, that there may presently exist more recharging sites and/or contributing surfaces than those considered so far.

Citation Massuel, S., Cappelaere, B., Favreau, G., Leduc, C., Lebel, T. & Vischel, T. (2011) Integrated surface water–groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. Hydrol. Sci. J. 56(7), 1242–1264.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号