首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The authors examine the reliability of site response estimations obtained by the horizontal to vertical (H/V) spectral ratios of microtremors by means of cross‐validation with the ratio of the horizontal spectra of earthquake motion with respect to reference sites. The data comprise microtremor and ground motion records recorded at 150 sites of Yokohama strong motion array. The use of non‐supervised pattern recognition techniques aims to group the sites with more objectivity. Attributes defining the overall shape of the amplification spectra serve as input in the computation of Euclidean distance similarity coefficients amongst sites. The implementation of the Ward clustering scheme leads to the attainment of a meaningful tree diagram. Its analysis shows the possibility of summarizing the results into six general patterns. A good coincidence of site effects estimates at 80 per cent of the sites becomes apparent. However, this coincidence appears poor for sites characterized by H/V amplification ratios around 2 or smaller and predominant periods longer than 0.5 s. In such cases, the presence of stiff, sandy sediments in the soil profile proves common. To proscribe H/V estimations, relying solely on the small spectral ratios criterion seems inadequate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A practical method is presented for determining three‐dimensional S‐wave velocity (VS) profile from microtremor measurements. Frequency–wave number (fk) spectral analyses of microtremor array records are combined, for this purpose, with microtremor horizontal‐to‐vertical (H/V) spectral ratio techniques. To demonstrate the effectiveness of the proposed method, microtremor measurements using arrays of sensors were conducted at six sites in the city of Kushiro, Japan. The spectral analyses of the array records yield dispersion characteristics of Rayleigh waves and H/V spectra of surface waves, and joint inversion of these data results in VS profiles down to bedrock at the sites. Conventional microtremor measurements were performed at 230 stations within Kushiro city, resulting in the H/V spectra within the city. Three‐dimensional VS structure is then estimated from inversion of the H/V spectra with the VS values determined from the microtremor array data. This reveals three‐dimensional VS profile of Kushiro city, together with an unknown hidden valley that crosses the central part of the city. The estimated VS profile is consistent with available velocity logs and results of subsequent borings, indicating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The relationships between the spectral characteristics of earthquake ground motions and those of micro‐tremors are investigated using the observed data from a dense strong‐motion network consisting of 108 stations in the Yun‐Li, Chia‐Yi and Tai‐Nan areas in southwestern Taiwan. Many high‐quality recordings, including those of the 921 Chi‐Chi earthquake (Mw=7.6), the 1022 Chia‐Yi mainshock (ML=6.4), the 1022 major aftershock (ML=6.0), as well as some weak motion events are selected to evaluate site responses. Microtremor measurements are also performed at most ground motion stations. With many stations in the area located on an alluvium structure, however, it is difficult to find good reference stations on rock sites, which therefore necessitates the calculation of single‐station H/V ratios. The predominant frequencies obtained from H/V ratios are consistent with those from spectral ratios. The site characteristics between the strong and weak events are different, however. This implies that a nonlinear effect probably occurred with the strong‐motion events. The main peak in the H/V spectra of the microtremors is in good agreement with the first peak obtained from the spectra of earthquake ground motions. It is reasonable to claim that the main peak reflects the deep underground structure. On the basis of the H/V ratios of the microtremors, it is concluded that the lower predominant frequencies appear in the plain area, while the higher values are near the mountainous region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.  相似文献   

5.
Two hilly sites were selected to study seismic site response due to topography effects. The sites were selected in a manner to be as much as possible homogenous and free of the soft soil layers effects. The hills were instrumented by nine velocimetric stations to record microtremors and the obtained data were analyzed using horizontal to vertical spectral ratios. Some standard spectral ratio tests were performed on noise as well. Then the instrumented hills were modeled (both 2D and 3D) assuming a linear elastic constitutive behavior subjected to vertically propagating SV and P Ricker wavelets. All calculations were performed in time domain using direct boundary element method. Different transfer function components, amplification patterns and spectral ratios were calculated in frequency domain. The frequency of vibration, obtained by experimental studies, is between 4 and 5 Hz for both of the hills. The spectral ratios derived by numerical simulations were compared with the observed spectral ratios. They show relatively good similarities between the results of these two methods. The frequencies of vibration derived from different methods seem to be nearly identical. The agreement in term of resonance frequency between microtremors and numerical modeling suggests that noise measurements could represent a simple, even if preliminary, tool in order to identify possible topographic amplification.  相似文献   

6.
Seven sites were instrumented in the Parsa area located in the seismically active Dead Sea rift system. Moderate and weak motions generated by earthquakes and ambient noise were used to identify amplifications due to geological and topographic effects.Three observation methods were applied to estimate site effects: (1) conventional soil–bedrock station-pair spectral ratios for earthquake motions and microtremors; (2) horizontal-to-vertical component spectral ratios for shear-waves observed simultaneously at a site (receiver function estimates) and (3) horizontal-to-vertical spectral ratios of microtremor measurements (Nakamura estimate). The site response spectra of soil sites exhibited significant peaks between 1 and 3 Hz with amplification factors typically within the range of 2.5–4.0. A bedrock site on the high plateau near the escarpment top showed a peak between 2 and 3 Hz, mainly due to an EW oscillation of the NS topographic feature. Our observations indicated that seismograms recorded in the tunnel were either enriched or depleted at certain frequencies owing to interference of incident and surface-reflected waves.  相似文献   

7.
The paper utilizes previously developed microtremor simulation technique to evaluate the reliability of Rayleigh wave dispersion curve estimated by fk spectral analysis of microtremor array measurement. The simulated microtremors are obtained for a fictitious (TEST) site. Attempt is also made to obtain the dispersion curve for two real sites (OHDATE and SKC) by inverse analysis of the microtremor array measurement using fk spectra method. The estimated dispersion curve from simulated microtremors (TEST site) compares well with the theoretical dispersion curve, demonstrating the reliability of fk spectra method and indicating that the estimated dispersion curve from microtremor measurements could be adequately used as the target for inverse analysis purposes. It is also demonstrated that the dispersion curve from microtremor measurements can be utilized to estimate the soil profile at OHDATE and SKC sites by inverse analysis. Results show that the theoretical dispersion curve of the fundamental mode of Rayleigh wave after the end of inverse analysis are in good agreement with the dispersion curve obtained by fk spectral analysis of microtremor array measurement.  相似文献   

8.
Throughout their long history, the towns of Lod and Ramle have been severely affected by strong earthquakes. The last destructive earthquake occurred on July 11, 1927 and caused the destruction of large parts of these cities, reaching a seismic intensity of VIII–IX on the MSK scale. Such a high intensity from a relatively distant earthquake (about 70 km) of magnitude 6.2 is likely to be the result of local site effects of the sedimentary layers that may have significantly enhanced earthquake ground motions. This study is focused on estimating the seismic hazard to Lod and Ramle by implementing a three-step process (1) detailed mapping of the characteristics of the H/V spectral ratios from ambient noise, (2) incorporating geological information and well data to construct subsurface models for different sites within the investigated area and (3) estimating the seismic hazard in terms of uniform hazard site-specific accelerations. The horizontal-to-vertical spectral ratios of ambient noise were used to approximate the fundamental resonance frequencies of the subsurface and their associated amplitudes. About 360 sites in Lod and Ramle were instrumented for varying periods. The soil sites exhibits H/V peak amplitudes ranging from 4 to 6 in the frequency range 0.5–2.5 Hz. These data were used to constrain 1-D subsurface models that were developed using geological data and borehole information. H/V spectral ratio observations were checked against theoretical subsurface transfer functions at locations where borehole information is available farther constraint the range of possible Vs velocities of the different layers and thus, by means of trial an error it was possible to conclude a systematic spatial distribution of the Vs velocity and thickness in the substrata that are also consistent with the spatial distribution of the fundamental resonance frequencies of the soft sediments obtained by means of the H/V spectral ratios, and other geological and geophysical information available at different locations in the study area. The evaluated subsurface models are introduced using the SEEH procedure of Shapira and van~Eck [(1993) Natural Hazards 8, 201–205] to assess Uniform Hazard Site-Specific Acceleration Spectra for different zones within the towns of Lod and Ramle. These evaluations are very important for realistic assessment of the vulnerabilities of all types of existing and newly designed structures and for urban and land use planning.  相似文献   

9.
The physical implication of coda amplitude ratio is discussed in term of energy ratio. The digitized data recorded at the station of Beijing Telemetered Seismograph Network between 1989 and 1990 are used to calculate amplitude ratios of coda to direct S wave, and energy ratios. The spectral energy ratios are used to estimate the coda Q and mean free path l in the Beijing area, as well as the two quality factors Q i and Q S separately due to intrinsic absorption and scattering attenuation. The decay of seismic waves in their propagation seems mainly resulted from the intrinsic absorption in Beijing region. The temporal variations of amplitude ratio and energy ratio at Changli station during the above two years are inspected; some of them largely depart from their mean value. It may reflect the seismogenic process, but using the data lasting longer time with more case histories needs further study. This study is sponsored by the Key Project of State Science and Technology of China, No. 96-918.  相似文献   

10.
In seismology and seismic engineering soils and structures are modeled as oscillators characterized by modal (resonance) frequencies, shapes and damping. In 1973 Cole proposed the RandomDec technique to estimate both the damping and the fundamental mode of structures from the recorded time series at a single point, with no need for spectral analyses. Here we propose a number of modifications to the original RandomDec approach, that we group under the name DECÓ, which allow to determine the damping as a function of the frequency and therefore the damping of all the vibration modes. However, the motion of structures is so amplified at the resonance frequencies that detecting the characteristic parameters by recording ambient vibrations is relatively easy. More interesting is to apply the DECÓ approach to the soil in the attempt to estimate the mode damping from single station measurements. On soils, the resonance frequencies are normally identified as peaks in the horizontal to vertical spectral ratios of microtremors. However, at these frequencies what is observed is a local minimum in the vertical spectral component, sometimes associated to local maxima in the horizontal components, whose visibility depend on the specific amount of SH and Love waves at the site. The determination of soil damping is therefore a much less trivial task on soils than on structures. By using microtremor and earthquake recordings we estimate the soil damping as a function of shear strain and observe that this is one order of magnitude larger than what is measured in the laboratory on small scale samples, at least at low-intermediate strain levels. This has severe consequences on the numerical seismic site response analyses and on soil dynamic modeling.  相似文献   

11.
本文根据Aki等人提出的尾波理论,导出了地方震尾波水平分量与垂直分量的持续时间比的具体表达式: τ_H/τ_V=I_H/I_V(Q_H/Q_V)~(1/4)·B_H/B_V。该式表明,τ_H/τ_V的变化主要反映了震源体一定范围内,由于介质的各向异性而引起的尾波在不同方向上的激发及衰减能力的差异。本文还讨论了地震前τ_H/τ_V短临异常的物理机制,认为异常的产生与孕震期间介质内裂隙的出现和闭合有关。1986年门源6.4级地震和1975年海城7.3级地震前,τ_H/τ_V都有不同程度的短期低值异常及临震高值突跳。门源地震前后门源台记录的直达S波的最大振幅比A_(mH)/A_(mv)也有与尾波持续时间比类似的异常。最后通过对一些震例的分析,初步得到震级与异常时间的关系为M=0.657lnT+3.44。  相似文献   

12.
—?Four days after the December 13, 1990 Hualien, Taiwan earthquake (M L = 6.9), a temporary array of fifteen triaxial digital accelerographs was deployed in the epicenter area to monitor aftershocks. Approximately 600 earthquakes triggered this array during the three-month deployment period. The Yan-Liau station (S63) alone recorded 162 events. Most of the accelerograms at S63 exhibit resonance. We have estimated site responses at the Yan-Liau station using both the single-station spectral ratio (or H/V ratio) method and the traditional spectral ratio method that compares ratios at a soil site with those at a reference hard rock site. Based on site response analyses of S waves and coda waves of ground motion recordings, both types of waves show that the H/V ratio provide a good estimate at the resonant frequency although the site amplification factor is overestimated. In addition, the study of microtremor is also a good alternate for estimating the site predominant frequency. While the ground acceleration (or PGA) gradually increases, the resonant frequency shifts to lower frequencies.  相似文献   

13.
The quality factors of coda and shear waves have been estimated for the SE Sabalan Mountain, geothermal region in northwestern Iran. We have analyzed 65 local earthquakes with magnitude of 2.8 to 6.1 and 2.8 to 5 for shear and coda wave quality factor estimation, respectively. These events were recorded on five stations installed by Building and Housing Research Center Network. Coda normalization and Spectral decay methods have been used to estimate the frequency dependence attenuation relation for shear wave, and single back-scattering method for coda waves. We have observed that the coda normalization method has supplied significantly higher Q S values as compared to the spectral method. The results show that, in general, Q values are significantly smaller for the entire frequency range as compared to tectonically active areas and are close to the values for volcanic areas.  相似文献   

14.
Aki (1969) first modeled coda waves of a local earthquake as a superposition of scattered surface waves. This paper attempts to clarify the constituents of surface-wave coda at long periods at very long lapse times. For a large earthquake of magnitude 7 or larger, vertical component oscillation in periods from 90 to 180 s persists for more than 20 hours from the earthquake origin time. Although the early portion of the coda envelope is successfully modeled by assuming incoherent scattered Rayleigh waves by heterogeneities distributed all over the Earth, the later potion of the observed coda envelope (roughly later than 35,000 s) has systematically larger amplitude than theoretical prediction. To clarify the cause of this discrepancy, we studied the constituents of vertical-component seismograms of three large earthquakes recorded by the F-net in Japan using the f-k power spectral analysis. We found that the direct and scattered fundamental-mode Rayleigh waves of velocity about 3.7 km/s are dominant in the earlier part of each envelope. It justifies the use of a scattering model of the fundamental Rayleigh waves for synthesizing the envelope. At lapse times later than 20,000 s–35,000 s, higher modes with phase velocities around 20 km/s become dominant. The transition time to the dominance of higher modes is found to become earlier for a deeper focus earthquake. The small coda attenuation factor from (1.90±0.23) × 10−3 to (2.38±0.32) × 10−3 estimated from later coda envelopes recorded at IRIS stations distributed worldwide also agrees with the attenuation factor of spheroidal modes according to PREM. We may interpret that higher mode waves are uniformly distributed at large lapse time due to large velocity dispersion and/or scattering and they dominate over the fundamental mode waves because of smaller attenuation in the lower mantle. The coda attenuation measurement proposed by Aki is found to be useful even for long periods and at very large lapse times.  相似文献   

15.
Array measurements of microtremors at 16 sites in the city of Thessaloniki were performed to estimate the Vs velocity of soil formations for site effect analysis. The spatial autocorrelation method was used to determine phase velocity dispersion curves in the frequency range from 0.8–1.5 to 6–7 Hz. A Rayleigh wave inversion technique (stochastic method) was subsequently applied to determine the Vs profiles at all the examined sites. The determination of Vs profiles reached a depth of 320 m. Comparisons with Vs values from cross-hole tests at the same sites proved the reliability of the SPAC method. The accuracy of the Vs profiles, the ability to reach large penetration depths in densely populated urban areas and its low cost compared to conventional geophysical prospecting, make Mictrotremor Exploration Method very attractive and useful for microzonation and site effects studies. An example of its application for the site characterization in Thessaloniki is presented herein.  相似文献   

16.
The 1999 Chi-Chi, Taiwan earthquake, MW = 7.6, caused severe damage in the near-fault region of the earthquake. In order to evaluate site effects in the near-field strong motions we estimate S-wave velocity structures of sediments at four sites using array records of microtremors. We also recalculated S-wave velocity structures at other four sites previously reported. To show the validity of the estimated S-wave velocity structures we separate empirical site responses from aftershock records using the generalized inversion method and show the agreement between empirical and theoretical site responses. We also show an observed fact that suggests soil nonlinearity during the Chi-Chi earthquake by comparing horizontal-to-vertical spectral ratios (HVRs) for main shock records with HVRs for aftershock records. Then we calculate one-dimensional equivalent-linear site responses using the estimated S-wave velocity structures and the main shock records observed on the surface. It is found that site amplification due to thick (about 6 km) sediments is one of the important factors for explaining the long-period velocity pulses of about 5 to 10 sec observed at sites in the footwall during the Chi-Chi earthquake. It is also found that the theoretical site responses of shallow soft sediments at sites that sustained severe damage in the hanging wall shows significant amplification around 1 sec. As the amplitude of velocity pulses with period around 1 sec is most critical in causing damage to ordinary buildings of moderate heights, our results suggest that the 1-sec period velocity pulses, amplified by the site response of shallow sediments should contribute to the severe damage during the Chi-Chi earthquake.  相似文献   

17.
—We determined the response to P- and S-wave incidence of the permanent stations of the seismic network of Baja California (RESNOM) using two independent methods. We selected 65 events with magnitudes between 2.2 and 4.8 and hypocentral distances ranging between 5 and 330 km. The site response of the ten stations analyzed was first estimated using average spectral ratios between the horizontal and the vertical components of motion (H/V ratios). As a second approach we performed a simultaneous inversion for source and site. In order to invert the spectral records to determine the site response, we made an independent estimate of the attenuation for two different source-station path regions. Then we corrected the spectral records for the attenuation effect before we made the inversion. Although the average H/V ratio of many sites is inside the error bars of the site response estimated with the spectral inversion, the spectral inversion tends to give higher values. For the S wave some sites show similar frequency of predominant peak when comparing the responses obtained with both methods. In contrast, for the P waves the H/V ratios disagree with the results of the inversion. In general, the site response of the stations is strongly frequency dependent for both P and S waves. We also found that the natural frequency of resonance of the sites is near 0.5 Hz for P and near 0.8 Hz for the S waves.  相似文献   

18.
Array measurements of microtremors were carried out at thirty sites in Damascus city, Syria to estimate S-wave velocity structures of shallow soil formations for site effect analysis. The microtremor data were recorded by 6 vertical-component seismometers distributed along the circumferences of two circles as well as a 3-component seismometer deployed in the center. The phase velocities were estimated at each site from the vertical components of recorded microtremor data by using the Spatial Autocorrelation method. Then, Genetic Simulated Annealing Algorithm technique was applied for inversion of the phase velocities to estimate 1-D S-wave velocity structures beneath the sites. The inverted Vs profiles are not uniform in Damascus city and the results show that a shallow soft layer (∼200 m/s) appears in the eastern part of the city as well as the central part along Barada River. This layer controls the amplification distribution in the city with a high amplification mainly observed at the locations having this layer. The inversion results also show that the depth to the engineering bedrock (∼750 m/s) is very shallow along the foothills of Mt. Qasyoun in the north-west. Then the depth increases towards the east and the south. The maximum depth to the engineering bedrock (∼80 m) was observed in the southern part of Damascus. To validate the results of the inversions, the spectral ratios between the horizontal and vertical components (H/V) of the recorded microtremor data at the central seismometer were compared with the computed ellipticities of the fundamental-mode Rayleigh-waves based on the respective Vs structure. The results show a good agreement in a period range of 0.05 s to 0.5 s. In this period range, the dominant peaks of the H/V ratios are due to the overall effect of the velocity contrasts between the shallow layers representing the subsurface S-wave velocity structure. Moreover, the average S-wave velocity for the top 10 m of soils (VS10) shows a better correlation with the averaged site amplification in a period range of 0.05 s to 0.5 s than VS30 which indicates that VS10 can be a better proxy for high-frequency site amplification in the case of Damascus city.  相似文献   

19.
We present the results of the analysis of array recorded microtremors at 14 sites, close to the edges of the Mygdonian basin in northern Greece (Euroseistest). These measurements were made in order to better constrain the geometry and velocity structure of the basin as the soil layers taper out close to rock outcrop, where geology is complex and we may expect significant changes of the subsoil structure over short distances. The data were analysed using the SPAC method and HVSR. The first interprets the measurements as Rayleigh waves (for the vertical component we analysed) and allows to invert a phase velocity dispersion curve from computed correlation coefficients. The second estimates a local transfer function directly, from ratios of Fourier amplitude spectra. A phase velocity dispersion curve could be derived for 12 of the 14 measurement sites, and at three of the sites no resonant frequency was observed in the HVSR. It is encouraging that we obtained good results at most of our sites, in spite of the lateral heterogeneity expected close to the edges of Euroseistest. Our results allow us to obtain shear wave velocity models at most of the measurement sites (12 out of 14). They are also useful to explore the relation between size of the array and wavelength range for which a dispersion curve may be estimated, which in our case has strong limitations. We identify the frequency of resonance of the sediments as a small loss of coherency in SPAC’s correlation coefficients. Finally, we also consider the applicability of the joint inversion of the resonance frequency determined using HVSR and the phase velocity dispersion curve obtained from SPAC.  相似文献   

20.
We investigate a special type of variability in response spectral amplification ratios computed from numerical “engineering” models for a soft soil site. The engineering models are defined by shallow soil layers over “engineering” bedrock with a shear-wave velocity over 600–700 m/s and the model is subjected to vertical propagating shear waves. The variability, perhaps unique in earthquake engineering, is a result of the “perfectly accurate” computational procedure. For example, an engineering soil site model, subjected to two rock site records or the two horizontal components of a rock site record, produces different response spectral amplification ratios. We use a large number of strong-motion records from “engineering” rock sites, with a reasonably balanced distribution with respect to magnitude and source distance, generated by subduction earthquakes in Japan, to investigate the nature of the variability. In order to avoid any approximation in removing the effect of soil nonlinear response, we use a simple model, a single horizontal soil layer over a bedrock, modelled as elastic. We then demonstrate that a similar type of variability observed in the one- or two-dimensional nonlinear soil models is caused by the nature of response spectral amplification ratios, not a direct result of soil nonlinear response. Examination of variability reveals that the average of response spectral amplification ratios systematically depends on both earthquake magnitude and source distance. We find that, at periods much longer than the site natural periods of the soil sites, the scatter of the amplification ratios decreases with increasing magnitude and source distance. These findings may have a potential impact in establishing design spectra for soft soil sites using strong-motion attenuation models or dynamic numerical modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号