首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent observations provide strong evidence for the BL Lac object OJ287 exhibiting a 11.6±0.5 yr periodicity with a double-peaked maxima in its optical flux variations. Several models have been proposed for the optical behavior. The 2005 November outburst in OJ287 gives us a surprising result since calculation based on the periodicity was predicting such an outburst in late 2006. Here we suggest a new model, it can not only explain the optical quasi-periodic behavior, but also the radio flares behavior which is and simultaneous with the optical flares. We propose that OJ287 is a binary pair of super-massive black holes, both of them creating a jet. The quasi-periodic double peaks would be due to the relativistic beaming effect on the emission coming from the double helix jets. We used “core flares” to explain the large lags between light curves at different frequencies, and the assumption of two jets appear to be merged with each other partly in the radio frequency emitting regions provides a viable interpretation that we can see only a broad maximum which contains two radio flares that we cannot distinguish.  相似文献   

2.
Das  T. K.  Nag  T. K. 《Solar physics》1998,179(2):431-440
The basal component of radio emission is the radio intensity obtained after subtracting the sunspot-dependent (magneto-active) component from the observed flux and finally deducting the steady part from this subtracted value. The periodicity of this basal component of solar radio emission in the frequency band 0.245–15.4 GHz was studied both for the solar maximum (1980 and 1991) and minimum (1975 and 1986) periods. A constant periodicity of 35 days was observed in the entire radio band under study during the periods of maximum solar activity, whereas the periodicity fluctuates harmonically with frequency during the minimum periods, giving rise to an average time period of approximately 54 days.  相似文献   

3.
Joshi  Anita 《Solar physics》1999,185(2):397-403
Power-spectral analysis of cosmic-ray indices (CRI) data for the years 1989–1991 shows a 170-day periodicity of cosmic rays. The periodicity is related to a strong magnetic field. Power-spectral analysis of the long-term periodicity (11 years) of the CRI data for the years 1953–1997 shows that the period 1989–1991 is a unique one in the sense of the discussed pronounced periodicity. The 170-day periodicity of cosmic rays was interpreted in the base of six solar rotations (1 SR = 28.3-day periodicity of 10.7 cm solar radio flux) and may be connected to the instability of the solar core.  相似文献   

4.
The solar active region (AR) 7530 was observed at 6 cm on July 3 and 4, 1993 with the Westerbork Synthesis Radio Telescope, using a multi-channel receiver with very narrow bandwidth. We compare the radio data with Yohkoh SXT observations and with the magnetic field extrapolated from the Marshall vector magnetograms in the force-free and current-free approximations. The comparison with soft X-rays shows that, although a general agreement exists between the shape of the radio intensity map and the X-ray loops, the brightness temperature, T b, obtained using the parameters derived from the SXT is much lower than that observed. The comparison with the extrapolated photospheric fields shows instead that they account very well for the observed T b above the main sunspots, if gyroresonance emission is assumed. In the observation of July 4 an inversion and strong suppression of the circular polarization was clearly present above different portions of the AR, which indicates that particular relationships exist between the electron density and the magnetic field in the region where the corresponding lines of sight cross the field quasi-perpendicularly. The extrapolated magnetic field at a much higher level ( 1010 cm), satisfies the constraints required by the wave propagation theory all over the AR. However, a rather low electron density is derived.  相似文献   

5.
A strong evolution of galaxies is observed for 0<z<1, as evidenced by an increase of almost an order of magnitude in the galaxy star-formation rate density. However, it is known that dust obscuration has affected our understanding of galaxy evolution over this significant fraction of the age of the Universe. In order to study galaxy evolution free from dust induced biases, an ultra deep radio survey – the Phoenix Deep Survey – was initiated. With a detection limit of 60μJy, this homogeneous survey, complemented with multiwavelength (photometric and spectroscopic) observations, is being used to build a consistent picture of galaxy evolution. The ultra-deep radio source counts are presented, and interpreted using luminosity function evolutionary models. The discovery of extremely dusty galaxies from this survey, along with the clustering properties of the sub-mJy radio population, are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

7.
Supermassive binary black holes (SBBHs) are a natural outcome of galaxy mergers. Here we show that low-frequency (f≤10−6 Hz) quasi-periodic variability observed from cosmic blazar sources can provide substantial inductive support for the presence of close (d≲0.1 pc) SBBHs at their centers. It is argued on physical grounds that such close binary systems are likely to give rise to different (although not independent) periodicities in the radio, optical and X-ray/TeV regime, and, hence that detection of appropriate period ratios significantly corroborates the SBBH interpretation. This is illustrated for a binary model where optical longterm periodicity is related to accretion disk interactions, radio periodicity to Newtonian jet precession, and periodicities in the high energy bands to the orbital motion of the jet. We use the observed periodicities to constrain the properties for a sample of SBBH candidates including OJ 287 and AO 0235+16, and discuss the results within the context of jet activity and binary evolution.  相似文献   

8.
《New Astronomy Reviews》1999,43(8-10):643-646
In the framework of the study of a new sample of large angular size radio galaxies selected from the NRAO VLA Sky Survey, we have made radio observations of J2114+820, a low-power radio galaxy with an angular size of 6′. Its radio structure basically consists of a prominent core, a jet directed in northwest direction and two extended S-shaped lobes. We have also observed the optical counterpart of J2114+820, a bright elliptical galaxy with a strong unresolved central component. The optical spectrum shows broad emission lines. This fact, together with its low radio power and FR-I morphology, renders J2114+820 a non-trivial object from the point of view of the current unification schemes of radio-loud active galactic nuclei.  相似文献   

9.
A high-quality 80-minute time series of a part of a sunspots moat (18 ″ × 23 ″) in the G-band (4308.64 Å) has been analysed to measure the horizontal velocities of Magnetic Bright Points (MBPs). The observations were carried out in June 2004 at the new 1-meter Swedish Solar Telescope in La Palma. Spatial resolution was estimated to be 0.17 ″ or 125 km on the Sun, and images were taken in a frame selection mode in a 20-seconds interval. Individual feature tracking of MBPs with manual selection and automated tracking has been performed. The intensity of MBPs increases with size. The mean value in a MBP-velocity histogram was found to be 1.11 km s ?1 and it shows good accordance with an abnormal granulation-velocity histogram. MBP velocity histograms as presented here can be taken as an input for coronal heating models in an active region. However, MBPs move slower in an active region than in the network (presumably because of the higher active region magnetic flux) and hence, a process that includes dissipation of MHD waves through fast MBP motions (>2 km s ?1) may not alone explain the observed properties of the corona.  相似文献   

10.
We present a detailed statistical study of the observed anisotropy in radio polarizations from distant extragalactic objects. This anisotropy was earlier found by Birch (1982) and reconfirmed by Jain and Ralston (1999) in a larger data set. A very strong signal was seen after imposing the cut , whereRM is the rotation measure and its mean value. In this paper, we show that there are several indications that this anisotropy cannot be attributed to bias in the data. We also find that a generalized statistic shows a very strong signal in the entire data without imposing theRM dependent cut. Finally we argue that an anisotropic background pseudoscalar field can explain the observations.  相似文献   

11.
The Ulysses flyby of Jupiter has permitted the detection of a variety of quasiperiodic magnetospheric phenomena. In this paper, Unified Radio and Plasma Wave Experiment (URAP) observations of quasiperiodic radio bursts are presented. There appear to be two preferred periods of short-term variability in the Jovian magnetosphere, as indicated by two classes of bursts, one with 40 min periodicity, the other with 15 min periodicity. The URAP radio direction determination capability provides clear evidence that the 40 min bursts originate near the southern Jovian magnetic pole, whereas the source location of the 15 min bursts remains uncertain. These bursts may be the signatures of quasiperiodic electron acceleration in the Jovian magnetosphere; however, only the 40 min bursts occur in association with observed electron bursts of similar periodicity. Both classes of bursts show some evidence of solar wind control. In particular, the onset of enhanced 40 min burst activity is well correlated with the arrival of high-velocity solar wind streams at Jupiter, thereby providing a remote monitor of solar wind conditions at Jupiter.  相似文献   

12.
Periodicities of solar irradiance and solar activity indices,I   总被引:1,自引:0,他引:1  
Using a standard FFT time series analysis, our results show an 8–11 months periodicity in the solar total and UV irradiances, 10.7 cm radio flux, Ca-K plage index, and sunspot blocking function. The physical origin of this period is not known, but the evidence in the results exclude the possibility that the observed period is a harmonic due to the FFT transform or detrending. Periods at 150–157 and 51 days are found in those solar data which are related to strong magnetic fields. The 51-day period is the dominant period in the projected areas of developing complex sunspot groups, but it is missing from the old decaying sunspot areas. This evidence suggests that the 51-day period is related to the emergence of new magnetic fields. A strong 13.5-day period is found in the total irradiance and projected areas of developing complex groups. This confirms those results (e.g., Donnelly et al., 1983, 1984; Bai, 1987, 1989) which show that active centers are located 180 deg apart from each other.Our study also shows that the modulation of various solar data due to the 27-day solar rotation is more pronounced during the declining portion of solar cycle than during the rising portion. This arises from that the active regions and their magnetic fields are better organized and more long-lived during the maximum and declining portion of solar cycle than during its rising portion.  相似文献   

13.

The radio frequency emission at 10.7 cm (or 2800 MHz) wavelength (considered as solar flux density) out of different possible wavelengths is usually selected to identify periodicities because of its high correlation with solar extreme ultraviolet radiation as well as its complete and long observational record other than sunspot related indices. The solar radio flux at 10.7 cm wavelength plays a very valuable role for forecasting the space weather because it is originated from lower corona and chromospheres region of the Sun. Also, solar radio flux is a magnificent indicator of major solar activity. Here in the present work the solar radio flux data from 1965 to 2014 observed at the Domimion Radio Astrophysical Observatory in Penticton, British Columbiahas been processed using Date Compensated Discrete Fourier Transform (DCDFT) to identify predominant periods within the data along with their confidence levels. Also, the multi-taper method (MTM) for periodicity analysis is used to validate the observed periods. Present investigation exhibits multiperiodicity of the time series F10.7 solar radio flux data around 27, 57, 78, 127, 157, 4096 days etc. The observed periods are also compared with the periods of MgII Index data using same algorithm as MgII Index data has 99.9% correlation with F10.7 Solar Radio Flux data. It can be observed that the MgII index data exhibits similar periodicities with very high confidence levels.Present investigation also clearly indicates that the computed results are very much confining with the results obtained in different communication for the similar data of 10.7 cm Solar Radio Flux as well as for the other solar activities.

  相似文献   

14.
The advent of new observational facilities in the last two decades has allowed the rapid discovery and high-resolution optical imaging of many strong lens systems from galaxy to cluster scales, as well as their spectroscopic follow-up. Radio telescopes have played the dominant role in the systematic detection of dozens of new arcsec-scale lens systems. For the future, we expect nothing less! The next major ground- and space-based facilities, especially the Square Kilometer Array can discover tens of thousands of new lens systems in large sky surveys. For optical imaging and spectroscopic follow-up a strong synergy with planned optical facilities is needed. Here, we discuss the field where strong gravitational lensing is expected to play the dominant role and where SKA can have a major impact: The study of the internal mass structure and evolution of galaxies and clusters to z 1. In addition, studies of more exotic phenomena are contemplated. For example, milli- and micro-lensing can provide a way to measure the mass-functions of stars and CDM substructure at cosmological distances. All-sky radio monitoring will also rapidly develop the field of time-domain lensing.  相似文献   

15.
Hard X-ray states and radio emission in GRS 1915+105   总被引:1,自引:0,他引:1  
We compare simultaneous Ryle Telescope radio and Rossi X-Ray Timing Explorer X-ray observations of the galactic microquasar GRS 1915+105, using the classification of the X-ray behaviour in terms of three states as previously established. We find a strong (one-to-one) relation between radio oscillation events and series of spectrally hard states in the X-ray light curves, if the hard states are longer than ∼100 s and are 'well separated' from each other. In all other cases the source shows either low-level or high-level radio emission, but no radio oscillation events. During intervals when the source stays in the hard spectral state for periods of days to months, the radio behaviour is quite different; during some of these intervals a quasi-continuous jet is formed with an almost flat synchrotron spectrum extending to at least the near-infrared. Based on the similarities between the oscillation profiles at different wavelengths, we suggest a scenario which can explain most of the complex X-ray:radio behaviour of GRS 1915+105. We compare this behaviour with that of other black hole sources, and challenge previous reports of a relation between spectrally soft X-ray states and the radio emission.  相似文献   

16.
Chiuderi Drago  F.  Alissandrakis  C.E.  Bastian  T.  Bocchialini  K.  Harrison  R.A. 《Solar physics》2001,199(1):115-132
In this paper we compare simultaneous extreme ultraviolet (EUV) line intensity and microwave observations of a filament on the disk. The EUV line intensities were observed by the CDS and SUMER instruments on board SOHO and the radio data by the Very Large Array and the Nobeyama radioheliograph. The main results of this study are the following: (1) The Lyman continuum absorption is responsible for the lower intensity observed above the filament in the EUV lines formed in the transition region (TR) at short wavelengths. In the TR lines at long wavelengths the filament is not visible. This indicates that the proper emission of the TR at the filament top is negligible. (2) The lower intensity of coronal lines and at radio wave lengths is due to the lack of coronal emission: the radio data supply the height of the prominence, while EUV coronal lines supply the missing hot matter emission measure (EM). (3) Our observations support a prominence model of cool threads embedded in the hot coronal plasma, with a sheath-like TR around them. From the missing EM we deduce the TR thickness and from the neutral hydrogen column density, derived from the Lyman continuum and Hei absorption, we estimate the hydrogen density in the cool threads.  相似文献   

17.
Nine high- and low-resolution IEU spectra at different orbital phases during different cycles, of the hydrogen-poor single-lined spectroscopic binary KS per (HD 30353) have been studied. The near-UV spectrum is characterized by the presence of several lines of once ionized metals which show the same orbital RV shifts observed in the visual range. The MgII resonance lines present a sharp interstellar + circumstellar core and an emission peak at about 83 and 92 km s–1. The far UV spectrum is characterized by the presence of strong absorptions of the resonance lines ofNV,CIV, SiIV, SiIII.Direct determination of the IS extinction from the 2200 Å feature givesE(B-V)=0.33. A comparison of corrected logarithmic continuous energy distribution with the theoretical models by Kurucz, indicates that the companion is a hot star,T e=15000 K; logg=4. A comparison with the recent UV work ofv Sgr, shows that, KS Per is very similar tov Sgr.Based on observations by the International Ultraviolet Explorer (IUE) collected at the Villafrance Satellite Tracking Station and obtained from the IUE data bank.  相似文献   

18.
The relatively high contrast between planetary and solar low-frequency radio emissions suggests that the low-frequency radio range may be well adapted to the direct detection of exoplanets. We review the most significant properties of planetary radio emissions (auroral as well as satellite induced) and show that their primary engine is the interaction of a plasma flow with an obstacle in the presence of a strong magnetic field (of the flow or of the obstacle). Scaling laws have been derived from solar system planetary radio emissions that relate the emitted radio power to the power dissipated in the various corresponding flow–obstacle interactions. We generalize these scaling laws into a “radio-magnetic” scaling law that seems to relate output radio power to the magnetic energy flux convected on the obstacle, this obstacle being magnetized or unmagnetized. Extrapolating this scaling law to the case of exoplanets, we find that hot Jupiters may produce very intense radio emissions due to either magnetospheric interaction with a strong stellar wind or to unipolar interaction between the planet and a magnetic star (or strongly magnetized regions of the stellar surface). In the former case, similar to the magnetosphere–solar wind interactions in our solar system or to the Ganymede–Jupiter interaction, a hecto-decameter emission is expected in the vicinity of the planet with an intensity possibly 103–105 times that of Jupiter's low frequency radio emissions. In the latter case, which is a giant analogy of the Io–Jupiter system, emission in the decameter-to-meter wavelength range near the footprints of the star's magnetic field lines interacting with the planet may reach 106 times that of Jupiter (unless some “saturation” mechanism occurs). The system of HD179949, where a hot spot has been tentatively detected in visible light near the sub-planetary point, is discussed in some details. Radio detectability is addressed with present and future low-frequency radiotelescopes. Finally, we discuss the interests of direct radio detection, among which access to exoplanetary magnetic field measurements and comparative magnetospheric physics.  相似文献   

19.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

20.
We present new spectroscopic observations of the southern radio galaxy         . Despite the flat-spectrum character of the radio emission from this source, our optical spectra show no sign of the broad permitted lines and non-stellar continuum characteristic of quasar nuclei and broad-line radio galaxies. However, the high-ionization forbidden lines, including [O  iii ] λλ 5007, 4959, are unusually broad for a narrow-line radio galaxy     , and are blueshifted by 600 km s−1 relative to the low-ionization lines such as [O  ii ] λλ 3726,3729. The [O  ii ] lines are also considerably narrower     than the [O  iii ] lines, and have a redshift consistent with that of the recently detected H  i 21-cm absorption-line system. Whereas the kinematics of the [O  iii ] emission lines are consistent with outflow in an inner narrow-line region, the properties of the [O  ii ] emission lines suggest that they are emitted by a more extended and quiescent gaseous component. We argue that, given the radio properties of the source, our line of sight is likely to be lying close to the direction of bulk outflow of the radio jets. In this case it is probable that the quasar nucleus is entirely obscured at optical wavelengths by the material responsible for the H  i absorption-line system. The unusually broad [O  iii ] emission lines suggest that the radio source is intrinsically compact. Overall, our data are consistent the idea that     is a radio source in an early stage of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号