首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cr 135 revisited     
In this paper we combine information on photometry, radial velocities and proper motions to study the nature of the suspected open cluster Cr 135. For the first time we introduce proper motions of a large number of stars in the region of Cr 135 into the discussion. The proper motions taken from the PPM catalogue favour the hypothesis that Cr 135 is a real open cluster with at least 12 members at a distance of 300 pc having a space motion U, V, W of (−11, −13, −15) km s−1. But still more accurate observations are needed to separate it from the field stars without any doubt.  相似文献   

2.
We study the dynamics of a wide multiple system α Centauri + Proxima. The total energy of the system was estimated according to the available observational data on masses, coordinates, proper motions, and radial velocities of its components. To account for the effect of the observational data errors on the result, we have implemented the Monte Carlo method. From N = 106 statistical tests we show that with the probability of about 90% the motion is hyperbolic, i.e., α Cen AB and Proxima will after a while diverge from each other by a considerable distance. We also perform numerical modeling of dynamic evolution of the wide pair α Cen AB + Proxima in the regular field of the Galaxy. The trajectory of relative motion is constructed. The components diverge from each other by a distance of 20 pc over the time scale of about 200 Myr. The critical parameter for determining the dynamic status of the system is the radial velocity of the C component (Proxima), known with an error of 200 ms?1. For a reliable determination of the nature of motions in the system, we have to decrease the radial velocity error by at least an order of magnitude.  相似文献   

3.
利用上海天文台的照相底片资料,确定了疏散星团NGC6530天区364颗恒星的自行和成员概率,并对有关自行测定的方法、结果和精度等问题作了较为详细的介绍和讨论。使用的底片历元差为87年,全部恒星自行中误差的均方根值为1.09mas/a。  相似文献   

4.
Astrometric CCD observations of stars with large proper motions were carried out during 2008–2014 using telescopes of the Nikolaev Astronomical Observatory. A catalog of positions and proper motion of 1596 fast stars with proper motions exceeding 150 mas/yr has been compiled based on observation results. The catalog covers the declination zone from 0° to 65°. The standard error of derived proper motion is 1…10 mas/yr for both coordinates depending on the observational history of the star. Data from eight different star catalogs and surveys have been used to derive proper motion. The comparison results of proper motion with data from modern catalogs and results of the statistical test for the detection of possible invisible components are given.  相似文献   

5.
The PUL2 catalog has been photographically compiled in Pulkovo according to Deutch's plan. The catalog contains the mean coordinates of stars in the ICRS system at epoch J2000.0 and their original absolute proper motions. The photographic observations were performed with a normal astrograph. The first and second epochs of the photographic plates are 1937–1965 and 1969–1986, respectively. The PUL2 fields uniformly cover the northern sky. The mean difference between the epochs is 24 years. At least three pairs of plates are available for each field. There are one-hour and five-minute exposures on all plates. One pair of plates was taken with a diffraction grating. Only bright reference stars were measured on the pairs of plates with a grating. Based on a reduction model with six constants and using faint (\(15\mathop m\limits_. 2\)) reference stars, we determined the relative proper motions of the stars. We used ~700 galaxies for absolutization. The mean errors in the relative proper motions of the PUL2 stars are 5.5 mas yr?1 (milliarcseconds per year) in μα cos δ and 5.9 mas yr?1 in μδ. When using galaxies, the mean absolutization error is 7.9 mas yr?1 in both coordinates. By comparing the PUL2 and HIPPARCOS catalogs, we determined the components of the residual rotation vector ω for HIPPARCOS relative to the extragalactic (equatorial) coordinate system: ωx,y,z=(?0.98, ?0.03, ?1.66)±(0.47, 0.38, 0.42) mas yr?1. The mean error of one absolute proper motion of a bright PUL2 star in external convergence is 9 mas yr?1 in both coordinates.  相似文献   

6.
Radio tracking of the Sun over 6 hrs around transit was made by the Miyun 460 MHz compound interferometer to determine the two-imensional positions of Type-I sources and their proper motions. The measuring error in relative position was less than 0.1'.

Most of Type-I sources show slow motions at times. The speed ranges from the interferometer threshold of 0.2′/hr to 2′/hr (2.4(+6) cm/s). The largest proper motion found was 5' in 6 hrs, but the usual amplitudes were 1'-2' in 6 hrs. Active regions with moving Type-I sources show more flare activity, i.e. more flares of importance class 1 or greater within a three day period around the day when the source shows motion, while other regions are not so active. The proper motion is sometimes related to photospheric phenomena.

We believe that the proper motion of a Type-I source is a reflection of the changing configuration of the coronal magnetic field above the active region and this variation could be related to flare activity.  相似文献   


7.
A method for determining the velocity field parameters free from the distortions due to the systematic variations of stellar parallaxes over the celestial sphere is proposed. The method is based on the approximation of parallaxes as a function of coordinates on the sphere using spherical harmonics and can be applied in those cases where the solar motion cannot be eliminated from the stellar proper motions. Numerical experiments have shown that our method is able to obtain accurate coordinates of the solar apex and to calculate the kinematic parameters of the Ogorodnikov-Milne model to within three coefficients of the decomposition of parallaxes into first-order spherical harmonics. Examples of applying the method to the stellar proper motions of the Hipparcos catalogue, which admits checking the results using trigonometric parallaxes, are provided. Such a check has been found to yield a positive result only for nearby stars at heliocentric distances that do not exceed 400 pc and for which the parallaxes were determined with a relative error of at least 30%. An interesting feature of this method is the possibility to construct the shape of the figure which is formed by the deviations of the parallaxes from the sphere corresponding to the average parallaxes of the stars under consideration. It should be specially emphasized that all of this is done in the complete absence of information about the stellar parallaxes. The “solar terms” of the stellar proper motions that are formed by the products of the parallaxes by the solar motion components relative to the centroid of stars are the main source of information about the parallaxes here.  相似文献   

8.
Comparing absolute proper motions of stars obtained by different methods from observations with the Tautenburg Schmidt telescope (134/200/400), the Kiev long focus astrograph (40/550) and the Pulkovo normal astrograph (33/350) the external accuracy of the Tautenburg absolute proper motions was examined. It agrees well with the Tautenburg internal accuracy which is known from earlier investigations as 0″.7 per century. That accuracy was now achieved for all AGK3 stars in the M33 field including the bright stars from 7m to 10m.  相似文献   

9.
We measured relative proper motions with a typical accuracy of 1.0 milliarcsec/year (mas/a) for 2000 stars in a 1°4 × 1°4 field around the low-latitude globular cluster NGC 6934. Four plates taken with the Bonn double refractor, spanning an epoch difference of 62 years, were digitized completely. Within the tidal radius of the cluster, we find 106 stars with proper motion errors less than 5 mas/a. Membership probalilities are computed taking into account the individual proper motion errors and the radial distances to the cluster centre. We derive the mean relative proper motion of NGC 6934 using stars with high membership probabilities from radial velocities (Smith and Bell 1986) or from their location in the colour-magnitude diagram (Harris and Racine 1973). The relative proper motions of four Hipparcos stars in the field will be used to obtain the absolute proper motion of NGC 6934 once the extragalactically calibrated Hipparcos Output Catalogue is available.  相似文献   

10.
Astrometric CCD observations of 1123 stars with large proper motions (μ > 300 mas yr−1) from the LSPM (I/298) catalog in the declination zone +30°–+70° have been carried out with the Pulkovo normal astrograph since 2006. The observational program includes mostly stars that previously have not entered into high-accuracy projects to determine the proper motions. Our studies are aimed at determining new proper motions of fast stars in the HCRF/UCAC3 system and searching for stars with invisible companions in the immediate Galactic neighborhoods of the Sun. Having analyzed about 10 000 CCD frames, we have obtained the equatorial coordinates of 414 program stars in the HCRF/UCAC3 system at an accuracy level of 10–50 mas and determined their new proper motions. To derive the proper motions, we have used the data from several star catalogs and surveys (M2000, CMC14, 2MASS, SDSS) as early epochs. The epoch differences range from 5 to 13 years (on average, about 10 years); the mean accuracy of the derived proper motions is 4–5 mas yr−1. For 70 stars, we have revealed significant differences between the derived proper motions and those from the LSPM and I/306A catalogs (these proper motions characterize the mean motion of the photocenter in 50 years or more). Apart from systematic errors, these differences can result from the existence of invisible components of the program stars.  相似文献   

11.
We present an investigation of the differences between quasi-instantaneous stellar proper motions from the Hipparcos catalogue and long-term proper motions determined by combining Hipparcos and the Astrographic Catalogue. Our study is based on a sample of about 12000 stars of visual magnitude from 7 to 10 in two declination zones on the northern and equatorial sky. The distribution of the proper-motion differences shows an excess of large deviations. This is caused by the influence of orbital motion of unresolved binary systems. The proper-motion deviations provide statistical evidence for 360 astrometric binaries in the investigated zones, corresponding to about 2400 such binaries in the entire Hipparcos catalogue, in addition to those already known. In order to check whether the observed deviations are compatible with standard assumptions on the basic parameters of binary stars, we model the impact of orbital motion on the observed proper motions in a Monte Carlo simulation. We show that the simulation yields an acceptable approximation of the observations, if a binary frequency between 70% and 100% is assumed, i.e.if most of the stars in the sample are assumed to have a companion. Thus Hipparcos astrometric binaries confirm that the frequency of non-single stars among field stars is very high. We also investigate the influence of the mass function for the secondary component on the result of the simulation. A constant mass function and mass functions with moderate increase towards low masses lead to results, which are compatible with the observed proper-motion effects. A high preponderance of very-low-mass or substellar companions as produced, for example, by a M—1 power law is not in agreement with the frequency of proper-motion deviations in our sample of stars.  相似文献   

12.
The computational algorithm to determine the the proper motions of Zirconium stars on the basis of catalogues “Carte du Ciel” and on the recent photographic observations carried out with the 70cm Abastumani meniscus telescope is presented. It allowed to determine the proper motions of 288 stars in the region around α Per with a rms error of ± 0,004 arcsec/yr. Applying the method proper motions of 74 Zirconium stars and 146 control stars have been obtained. The error of proper motions obtained for the North Zone (δ > −2°) 109 AGK3 control stars is ± 0.006 arcsec/yr. On the basis of proper motins absolute magnitudes were separately calculated for the MCLPZS and LASZS. For the MCLPZS the average absolute visual magnitude at maximum, corresponding to the mean period of P = 350 days, equals −3ϕm.9. For the LASZS the mean absolute visual magnitude, corresponding to the apparent median ones equals −1ϕm.9. Low luminosity (Mv = −1ϕmϕ9) Zirconium stars escape rather far (at a distance of up to 2 kpc) to the South from the Galactic plane into the region l ∼ 240 – 260°, where its assumed to be a connection with the Large Magellanic Cloud (LMC) begins to appear. Low luminosity Zirconium stars are weakly correlated with position of the Galaxy spiral arms. The MCLPZS show a somewhat other distribution.  相似文献   

13.
The positions and proper motions of the stars from the XC1 catalog are compared with the data of other modern catalogs of stars and extragalactic objects. We demonstrate that the XC1 system is free from significant systematic errors. The external error in the proper motions of the stars fainter than 15 m is estimated at 3–5 mas/yr, depending on magnitude.  相似文献   

14.
On the base of CCD-observations made with the axial meridian circle of the Nikolaev Observatory from 2008 to 2009, we compiled a catalogue for astrometric positions and proper motions for 140321 stars located in an ecliptic zone and around high proper motion stars. The root-meansquare error for a star position is 20–65 mas in right ascension and 30–70 mas in declination. The UCAC2 catalogue is used as a reference for astrometric reductions. To derive stars’ proper motion and to estimate systematic errors of the compiled catalogue, cross-identification of the obtained data with modern astronomic catalogues Tycho2, 2MASS, CMC14, LSPM, PPMX, USNO-A2, and XPM-1.0 is performed. In addition to star position and proper motion, our catalogue contains photometric values B, V, r’, J, H, and K taken from other catalogues.  相似文献   

15.
Current and future wide field surveys in infrared passbands present opportunities for ultra low‐mass stellar sample selection via proper motions, as well as or instead of purely photometric techniques. Furthermore, proper motion measurements yield additional clues as to candidate membership of cluster or field (kinematic) populations. In this paper we review some recent results and speculate as to the possibilities afforded by the next generation of wide‐field infrared surveys. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.  相似文献   

17.
Horizontal proper motions of penumbral structure and umbral dots have been measured from a 17-min-long time series of sunspot images by numerical techniques. In the penumbra, inflows are seen to occur predominantly in the inner region, with an average velocity of 290 m s–1. Penumbral outflows take place mostly in the outer part, where they reach velocities as high as 1.5 km s–1, with an average velocity of 500 m s–1. In the umbra, proper motions of 28 bright dots have been measured with an accuracy better than 50 m s–1. The mean velocity of the umbral dots is 210 m s–1. Most of the umbral dots display the well-known inward motion away from the peripheral umbra.  相似文献   

18.
Based on a sample of RR Lyrae variable stars including more than 9000 objects with proper motions and distances, we have investigated the kinematics of the Galactic halo from the two-dimensional velocity field. We have used both the proper motions deduced independently by us from the positional data taken from all-sky catalogues in a time interval up to 65 years and the proper motions taken from the Gaia DR2 catalogue. In addition, we have also studied the halo kinematics from the three-dimensional velocity field of ~850 RR Lyrae variables with distances, proper motions, and line-of-sight velocities. The kinematic parameters describing the velocity field have been estimated by the maximum-likelihood method; their change with Galactocentric distance has been investigated. The radial velocity dispersion in spherical coordinates σr ≈ 160?170 km s?1 exceeds its values from previous papers approximately by 20 km s?1, while the anisotropy parameter β ≈ 0.68?0.72 agrees satisfactorily with previous studies. When estimating the rotation velocity of the population of RR Lyrae stars, we identified the inner and outer halos with weak prograde and retrograde rotations, respectively.  相似文献   

19.
Recent determinations of lunisolar precession and of the motion of the equinox are reviewed. Methods of determination are discussed which are based on proper motions referred to fundamental systems, on planetary motions, and on proper motions referred to galaxies. It is concluded that a new fundamental catalogue, which will replace the FK4 at some future date, should be based on revised values of precession and freed from errors in the motion of the equinox.Presented at IAU Colloquium No. 9, The IAU System of Astronomical Constants, Heidelberg, Germany, August 12–14, 1970.  相似文献   

20.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号