首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Sawyer 《Solar physics》1977,51(1):203-215
Optical activity near the time of two microwave negative bursts is distinctive enough to demonstrate a real relation, but does not occur simultaneously with the radio events. Such a loose association between microwave flux decreases and H prominence or filament activity is typical of a sample of 23 negative bursts. A model of a microwave occulting cloud differs from that of an H absorber: the H dark flocculus is relatively low, dense, and compact; the microwave occulter is higher in the corona, larger, and more completely ionized. The two types of absorption are not expected to be seen simultaneously, although they could be separate phases of an ejection of chromospheric material into the corona. The association of microwave decreases with H activity in some cases, and their usual non-simultaneity, is consistent with interpretation of the decrease as absorption, but it does not rule out alternative interpretations such as an intrinsic change in the emission of the microwave source.The location of decrease-associated activity has a suggestive, though not statistically significant, bias toward east limb that leads one toward an absorption interpretation, with asymmetry introduced by a tendency for ejected material to move from the leading part of an active region toward the following part, agreeing with Liszka's observation of asymmetry in the line-of-sight velocities of prominences.  相似文献   

2.
We simulate the collisional formation of a ring galaxy and we integrate its evolution up to 1.5 Gyr after the interaction. About 100–200 Myr after the collision, the simulated galaxy is very similar to observed ring galaxies (e.g. Cartwheel). After this stage, the ring keeps expanding and fades. Approximately 0.5–1 Gyr after the interaction, the disc becomes very large (∼100 kpc) and flat. Such extended discs have been observed only in giant low surface brightness galaxies (GLSBs). We compare various properties of our simulated galaxies (surface brightness profile, morphology, H  i spectrum and rotation curve) with the observations of four well-known GLSBs (UGC 6614, Malin 1, Malin 2 and NGC 7589). The simulations match quite well the observations, suggesting that ring galaxies could be the progenitors of GLSBs. This result is crucial for the cold dark matter (CDM) model, as it was very difficult, so far, to explain the formation of GLSBs within the CDM scenario.  相似文献   

3.
In clusters of galaxies, the reaction of the intracluster medium (ICM) to the motion of the co-existing galaxies in the cluster triggers the formation of unique features, which trace their position and motion. Galactic wakes, for example, are an apparent result of the ICM/galaxy interactions, and they constitute an important tool for deciphering the motion of the cluster galaxies.
In this paper we investigate whether Bondi–Hoyle accretion can create galactic wakes by focusing the ICM behind moving galaxies. The solution of the equations that describe this physical problem provides us with observable quantities along the wake at any time of its lifetime. We also investigate which are the best environmental conditions for the detectability of such structures in the X-ray images of clusters of galaxies.
We find that significant Bondi–Hoyle wakes can only be formed in low-temperature clusters, and that they are more pronounced behind slow-moving, relatively massive galaxies. The scalelength of these elongated structures is not very large: in the most favourable conditions a Bondi–Hoyle wake in a cluster at the redshift of z =0.05 is 12 arcsec long. However, the X-ray emission of the wake is noticeably strong: the X-ray flux can reach ∼30 times the flux of the surrounding medium. Such features will be easily detectable in the X-ray images of nearby, relatively poor clusters of galaxies by the Chandra and XMM-Newton satellites.  相似文献   

4.
5.
Athay  R.G. 《Solar physics》2000,197(1):31-42
We suggest that the waxing and waning of chromospheric and coronal heating leads to a dynamic solar atmosphere which, under the right circumstances, may produce spicules. Little is known about the heating process. However, Anderson and Athay (1989a) concluded from their study of chromospheric heating that the heating rate per gram of chromospheric matter is only a small fraction of the heating rate per gram of coronal matter. We postulate that the increased heating rate in the corona is a consequence of heating charged particles as opposed to heating neutral atoms. This leads to a specific degree of hydrogen ionization at which coronal heating begins to predominate over chromospheric heating. It also introduces the likelihood that the waxing and waning of the heating rates will have relatively large consequences in the levels where hydrogen ionization is becoming significant. It is demonstrated that changes in the heating rates are capable of inducing increases and decreases in coronal mass comparable to the mass contained in a typical spicule.  相似文献   

6.
7.
8.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3 M  yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.  相似文献   

9.
The influence of subclustering in rich clusters of galaxies is examined using results from numericaln-body experiments. It is found that, under some conditions, the standard virial theorem is satisfied. No physical missing mass is needed because its role is replaced by the gravitational energy of the subclustering. We find that, in the Coma cluster, this effect masquerades as a missing mass about 7 times that of the physical mass, so that the apparent extant virial discrepancy (M VT/M8) in this cluster is explained.  相似文献   

10.
《New Astronomy Reviews》2002,46(2-7):263-271
We review the question of the age of Compact Symmetric Objects (CSOs); defined as lobe-dominated sources smaller than 1 kpc in overall size. We show that the evidence increasingly points to these objects being very young (<104 yr old). Evidence from spectral aging, energy supply arguments and, most convincingly, from long term VLBI kinematic studies, is all consistent with the ‘youth’ scenario for CSOs. From VLBI kinematic studies hotspot advance speeds in CSOs are found to be 0.1 to 0.3c and external densities estimated from ram pressure balance are ≈1 cm−3. The separate question of the subsequent evolution of CSOs and whether they are the progenitors of classical double sources is, in contrast, not yet definitively answered. However it is found that the numbers of CSOs in flux limited samples is to first order what would be expected under such a scenario. The detailed differences in CSO population density between the data and model predictions might be resolved in various ways. Possibly not all CSOs evolve into large sources, or some sources show recurrent activity or, most likely, the simplest source evolution models need modification.  相似文献   

11.
So far, six mechanisms have been proposed to account for the Galactic disc heating. Of these, the most important appear to be a combination of scattering of stars by molecular clouds and by spiral arms. We study a further mechanism, namely the repeated disc impact of the original Galactic globular cluster population up to the present. We find that globular clusters could have contributed at most a small fraction of the current vertical energy of the disc, as they could heat the whole disc to  σ z = 5.5 km s−1  (c.f. the observed 18 and 39 km s−1 for the thick and thin discs, respectively). We find that the rate of rise of disc heat (  α= 0.22  in  σ z ∼ t α  with t being time) is close to that found for scattering by molecular clouds.  相似文献   

12.
We present quasi-simultaneous ASCA and RXTE observations of the most luminous known active galactic nucleus in the local ( z <0.3) Universe, the recently discovered quasar PDS 456. Multiwavelength observations have been conducted that show that PDS 456 has a bolometric luminosity of ∼1047 erg s−1 peaking in the ultraviolet part of the spectrum. In the X-ray band the 2–10 keV (rest-frame) luminosity is 1045 erg s−1. The broad-band X-ray spectrum obtained with ASCA and RXTE contains considerable complexity. The most striking feature observed is a very deep, ionized iron K edge, observed at 8.7 keV in the quasar rest-frame. We find that these features are consistent with reprocessing from highly ionized matter, probably the inner accretion disc. PDS 456 appeared to show a strong (factor of ∼2.1) outburst in just ∼17 ks, although non-intrinsic sources cannot be completely ruled out. If confirmed, this would be an unusual event for such a high-luminosity source, with a light-crossing-time corresponding to ∼2 R S . The implication would be that flaring occurs within the very central regions, or else that PDS 456 is a 'super-Eddington' or relativistically beamed system. Overall we conclude on the basis of the extreme blue/UV luminosity, the rapid X-ray variability and from the imprint of highly ionized material on the X-ray spectrum, that PDS 456 is a quasar with an unusually high accretion rate.  相似文献   

13.
The amplitudes of the two-point correlation function for galaxies are compared for galaxy catalogues extending to different depths. Strong evolution effects in the pattern of galaxy distribution seem to be present suggesting a secular increase of the clustering amplitude. Other explanations would involve large errors in the identification of faint objects as galaxies or a considerable contamination of the counts by very young highly redshifted galaxies as recently proposed by TINSLEY .  相似文献   

14.
15.
The Lyα line is an important diagnostic of star formation and activity in galaxies. The analysis of Lyα is complicated due to the resonant nature of the line and radiative transfer effects. High spectral resolution studies of local starburst galaxies with the unprecedented UV capabilities of the HST have shown that this line is either seen in absorption or in emission and in the latter case with a P?Cygni profile indicative of a large scale outflow of neutral gas. Moreover, HST imaging obtained with HST-ACS of a sample of 6 star-forming galaxies has revealed that a substantial fraction of the Lyα photons are diffused far away from the emissive knots. Since the importance of Lyα for tracing large scale structure, correlation functions, and galaxy formation is recognized, Lyα will remain a very important probe of the distant universe for the foreseeable future, and it is therefore imperative to acquire a better understanding of what mechanisms regulate our ability to detect this line.  相似文献   

16.
The partial mixing of matter between the radiative envelope and convective core in an early Btype star produces an additional increase of star luminosity during main sequence evolution. High quality data on stellar mass and luminosity defined from studies of detached double-lined eclipsing binaries are used to check the existence of such additional increase. It is shown that the additional luminosity increase does not contradict observed high quality data, if the intensity of partial mixing is restricted by the observed increase in surface helium content.  相似文献   

17.
In this paper, we consider the mysterious optical transient SCP 06F6 displaying a symmetric light curve with a (half-time) duration of about 100 days. The projected location of the event falls close to the center of the galaxy cluster CL 1432.5 + 332.8 lying at the redshift z = 1.112. Guided by suggestive symmetry of the light curve and its similarity in two photometric bands, which is a typical signature of microlensing events, we discuss this possibility in several scenarios. As a consistency check we use the lens mass inferred from the event duration and the size of the source. The second check comes from a plausible assumption that since the event was highly magnified there was a perfect alignment at the maximum magnification.  相似文献   

18.
We present a pair of high-resolution smoothed particle hydrodynamics simulations that explore the evolution and cooling behaviour of hot gas around Milky Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialized with a low-entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialized with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for  ∼4 Gyr  and eventually cools via the fragmentation and infall of clouds from ∼100 kpc distances. The low-entropy halo's X-ray surface brightness is ∼100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's baryons. The high-entropy halo has an X-ray brightness that is in line with observations, an extended distribution of pressure-confined clouds reminiscent of observed populations and a final disc galaxy that has half the mass and ∼50 per cent more specific angular momentum than the disc formed in the low-entropy simulation. The final high-entropy system retains the majority of its baryons in a low-density hot halo. The hot halo harbours a trace population of cool, mostly ionized, pressure-confined clouds that contain ∼10 per cent of the halo's baryons after 10 Gyr of cooling. The covering fraction for H  i and Mg  ii absorption clouds in the high-entropy halo is ∼0.4 and ∼0.6, respectively, although most of the mass that fuels disc growth is ionized, and hence would be under counted in H  i surveys.  相似文献   

19.
We discuss the distribution of radial velocities of galaxies belonging to the Local Group. Two independent samples of galaxies as well as several methods of reduction from the heliocentric to the galactocentric radial velocities are explored. We applied the power spectrum analysis using the Hann function as a weighting method, together with the jackknife error estimation. We performed a detailed analysis of this approach. The distribution of galaxy redshifts seems to be non‐random. An excess of galaxies with radial velocities of ∼24 km s–1 and ∼36 km s–1 is detected, but the effect is statistically weak. Only one peak for radial velocities of ∼24 km s–1 seems to be confirmed at the confidence level of 95%. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The extremely red galaxies (ERGs) are defined in terms of their very red optical-to-near IR colours (as R − K >5 or I − K >4). Originally this selection was aimed at selecting old (>1 Gyr) passively evolving elliptical galaxies at intermediate redshift (1< z <2), but it was soon discovered that young star-forming dusty galaxies can show similar colours and therefore be selected in the same surveys. It is crucial to distinguish between these two populations because they have very different consequences on the models of galaxy formation. Here we show that old ellipticals and dusty starbursts are expected to show different colours in the ( I − K ) versus ( J − K ) diagram for redshift range 1< z <2, thus providing a useful tool to classify ERGs in large samples up to K <20. This is mainly owing to the fact that old galaxies at these redshifts have a strong 4000-Å break at λ <1.2 μm ( J band), while dusty galaxies show smoother spectral energy distributions and therefore redder J − K colours. We discuss this difference in detail both in the framework of the stellar population synthesis models and by using observed spectra. The selection criterion is also compared with the properties of ERGs of known nature. We also show that this colour selection criterion is also useful to separate the ERGs from brown dwarf stars showing similar optical-to-IR colours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号