首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. P -wave seismograms at ranges less than 10 km are synthesized by asymptotic ray theory and by summation of Gaussian beams for point sources located in a low-velocity wedge surrounding a fault. The computations are performed using models of the wedge inferred from the analysis of reflection and refraction experiments across the San Andreas and Hayward-Calaveras faults. Calculations in these models show that the 10–20Hz vertical displacements of earthquakes located at 3–10km depth are amplified by up to an order of magnitude in a 1–2km wide region centred on the fault trace compared to displacements predicted by laterally homogeneous models of the crust. This amplification is not cancelled by high attentuation in the fault zone and compensates for the reduction in amplitudes directly above the source predicted from the radiation pattern of a strike-slip earthquake. Depending on the source depth of the earthquake and the structure and velocity contrast of the wedge, multiple triplications in the travel-time curve of direct P - and S -waves will occur at stations in the fault zone. A wedge model successfully predicts the triplications observed in the P waveforms of aftershocks of the Coyote Lake earthquake recorded in the fault zone, showing that body waves from microearthquakes can be used to determine the three-dimensional velocity structure of the fault zone. The amplification, waveform complexity, and distortion of ray paths introduced by the low- velocity wedge suggest that its effects should be included in the interpretation of strong ground motions and travel times observed in the fault zone. For realistic models of the wedge, asymptotically approximate methods of calculating the body waveforms are strictly valid for frequencies greater than 20Hz. Numerical methods may be necessary to calculate accurately the wavefield at lower frequencies.  相似文献   

2.
Simulation of SH- and P-SV-wave propagation in fault zones   总被引:3,自引:0,他引:3  
Seismic fault-zone (FZ) trapped waves provide a potentially high-resolution means for investigating FZ and earthquake properties. Seismic waves emitted within and travelling along low-velocity FZ layers may propagate many kilometres within the low-velocity structure associated with the fault. Waveform observation of FZ trapped waves can be modelled in terms of FZ layer velocities, thicknesses and attenuation coefficients. This can greatly improve the resolution of imaged FZ structure and microearthquake locations. At present, broad-band theoretical seismograms are restricted to plane-parallel layers of uniform properties. However, it is not clear how realistic these models are compared with actual fault structures which could, for example, flare outwards near the surface, have irregular boundaries, interior heterogeneities, etc. To address these interpretational uncertainties, we perform finite-difference simulations for irregular FZ geometries and non-uniform material properties within the layers. The accuracy of the numerical solutions are verified by comparison with the analytical solution of Ben-Zion & Aki (1990) for plane-parallel structures. Our main findings are: (1) FZs can widen at the ctustal surface only slightly modifying the trapped waves; (2) velocity variations with depth destroy trapped wave propagation at all wavelengths; (3) FZ trapped waves can be obscured by the presence of a low-velocity surface layer; (4) models with short-scale random structures suggest that trapped waves average out irregular FZ geometries, and hence can be effectively modelled by average-property plane-layered media for the observed range of wavelengths.  相似文献   

3.
A network of nine broad-band seismographs was operated from March to May 1994 to study the propagation of seismic waves across the Mexican Volcanic Belt (MVB) in the region of the Valley of Mexico. Analysis of the data from the network reveals an amplification of seismic waves in a wide period band al the stations situated in the southern part of the MVB.
The group velocities of the fundamental mode of the Rayleigh wave in the period range 2–13 s are found to be lower in the southern part of the MVB than in its northern part and in the region south of the MVB. The inversion of dispersion curves shows that the difference in group velocities is due to the presence of a superficial low-velocity layer (with an average S -wave velocity of 1.7 km s-1 and an average thickness of 2 km) beneath the southern part of the MVB. This low-velocity zone is associated with the region of active volcanism.
Numerical simulations show that this superficial low-velocity layer causes a regional amplification of 8–10 s period signals, which is of the same order as the amplification measured from the data. This layer also increases the signal duration significantly because of the dispersion of the surface waves. These results confirm the hypothesis of Singh et al. (1995), who suggested that the regional amplification observed in the Valley of Mexico is due to the anomalously low shear-wave velocity of the shallow volcanic rocks in the southern MVB  相似文献   

4.
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage.  相似文献   

5.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth.  相似文献   

6.
Slab low-velocity layer in the eastern Aleutian subduction zone   总被引:1,自引:0,他引:1  
Local earthquakes in the vicinity of the Alaskan Peninsula's Shumagin Islands often produce arrivals between the main P and S arrivals not predicted by standard traveltime tables. Based on traveltime and polarization, these anomalous arrivals appear to be from P -to- S conversions at the surface of the subducted Pacific Plate beneath the recording stations. The P -to- S conversion occurs at the top of a low-velocity layer which extends to at least 150 km depth and is 8 ˜ 2 per cent slower than the overlying mantle. The slab is ˜ 7 per cent faster than the mantle. The low-velocity layer contains the foci of the earthquakes in the upper plane of the double seismic zone and confines PS ray paths to lie within it. These observations indicate that layered structures persist to positions well past the surface location of the volcanic front. Reactions forming high-pressure minerals do not yield slab-like velocities until beyond the point that subduction zone magma genesis occurs. If the subducted oceanic crust forms the layer, it is subducted essentially intact.  相似文献   

7.
We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2°S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50–60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.  相似文献   

8.
Summary. The mid-crustal earthquake of 1973 March 9 (mb= 5.5, h ≤ 20 km) located 60 km south-west of Sydney, Australia, provides unambiguous evidence of contemporary thrust faulting in South-eastern Australia — a region of high heat flow and Cenozoic basaltic volcanism. Aftershock locations suggest a steeply dipping fault in the depth range from 8 to 24 km with a lateral extent of about 8 km. The mechanism solution is consistent with a tectonic stress field that is dominated by east—west horizontal compression. A seismic moment of 5.7 ± 1023± 20 per cent dyne-cm was computed from surface-wave amplitudes. Minimum values of slip and stress drop, 2 cm and 1 bar respectively, were estimated from the moment and a fault size taken' from aftershock locations.
Refinement modelling by a controlled Monte Carlo technique was used to provide unbiased models directly from multimode group velocities. The dispersion of fundamental and higher mode surface waves recorded at the digital high-gain station at Charters Towers, Queensland, and the WWSSN station at Adelaide, South Australia, is satisfied by crust- and upper-mantle models which have neither pronounced S-wave low-velocity zones nor thick high-velocity lids within 140 km of the Earth's surface. These models have subcrustal shear velocities of 4.20–4.32 km/s which are 0.4–0.5 km/s slower than Canadian shield shear velocities (CANSD).  相似文献   

9.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

10.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

11.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

12.
According to recent estimates, the continental mid-crust contains 35–40 per cent amphibolites. Heating of the crust by an underlying mantle plume, for example beneath continental rifts, high plateaus, and areas of intraplate volcanic activity, releases water. Dehydration of amphibole-bearing rocks at depths of 20–40  km occurs mainly in the temperature range 650–700 °C, and this releases about 0.4  wt per cent of water.
  Seismic tomography studies of the crust in the Kirgyz Tien Shan Range, where the age of the tectonic activity is less than 30  Ma, revealed a low-velocity zone in the mid-crust. The velocity of P waves was 0.4  km  s1 lower than in normal crust. MT sounding data in the region show the existence of a low-resistivity layer with an average resistivity of about 25  Ω  m at the depth of the low-velocity layer. The spatial correlation of the observed anomalous layers and calculated effect of fluid phase on seismic and electric parameters of rocks suggests the presence of aqueous fluids released by the heating of the mid-crust.  相似文献   

13.
VSP data collected in the KTB (Germany) borehole to a depth of 8.5 km in 1999 show a surprising spectral modulation of the downgoing wavefield. After filtering the data with the singular value decomposition technique it was found that below about 6.2 km there are two depth intervals where the modulation can be explained in terms of a basic wavelet plus two weighted and delayed copies of that wavelet, with the delay for each wavelet remaining almost constant in each interval. The boundary between the two intervals is at about 7.25 km depth and above and below this depth the delay for the second wavelet is almost the same, while the delay for the third wavelet is significantly different. Neither the modulation nor its depth variation are source related and cannot be explained in terms of multiple reflections in a subhorizontal low-velocity layer. On the other hand, finite difference synthetic data show that subvertical layering (which is prevalent in the borehole area) provides a mechanism that can explain the observations. This mechanism has analogies with the generation of the standard refracted (i.e. head) waves. When a plane wave front propagates perpendicular to the boundaries of a vertical low-velocity layer surrounded by two vertical high-velocity layers, refracted wave fronts are generated in the low-velocity layer, which in turn generate secondary wave fronts in the high-velocity layers. These wave fronts trail the primary wave fronts by a constant delay whose magnitude has a simple dependence on the thickness of the low-velocity layer and the velocities involved. This process creates multipath arrivals that in geological settings with steeply inclined and faulted layers may appear and disappear rather abruptly, which may contribute to a scattered appearance of the wavefield.  相似文献   

14.
Summary. The phase velocity dispersion of fundamental mode Rayleigh waves (period range 13–127 s) is determined by the interstation method for three profiles that traverse the North Sea region of northwest Europe. The resulting observations have been combined to produce a regional phase velocity curve with 95 per cent confidence intervals, which belongs to the aseismic continental platform category of Knopoff.
Inversions of the regional phase velocity curve by the'Hedgehog'method indicate that the North Sea region is characterized by an upper mantle low-velocity zone of S -wave velocity 4.35–4.45 km/s between depths of approximately 85–200 km.  相似文献   

15.
The Massif Central, the most significant geomorphological unit of the Hercynian belt in France, is characterized by graben structures which are part of the European Cenozoic Rift System (ECRIS) and also by distinct volcanic episodes, the most recent dated at 20 Ma to 4000 years BP. In order to study the lithosphere-asthenosphere system beneath this volcanic area, we performed a teleseismic field experiment.
During a six-month period, a joint French-German team operated a network of 79 mobile short-period seismic stations in addition to the 14 permanent stations. Inversion of P -wave traveltime residuals of teleseismic events recorded by this dense array yielded a detailed image of the 3-D velocity structure beneath the Massif Central down to 180 km depth. The upper 60 km of the lithosphere displays strong lateral heterogeneities and shows a remarkable correlation between the volcanic provinces and the negative velocity perturbations. The 3-D model reveals two channels of low velocities, interpreted as the remaining thermal signature of magma ascent following large lithospheric fractures inherited from Hercynian time and reactivated during Oligocene times. The teleseismic inversion model yields no indication of a low-velocity zone in the mantle associated with the graben structures proper. The observation of smaller velocity perturbations and a change in the shape of the velocity pattern in the 60–100 km depth range indicates a smooth transition from the lithosphere to the asthenosphere, thus giving an idea of the lithosphere thickness. A broad volume of low velocities having a diameter of about 200 km from 100 km depth to the bottom of the model is present beneath the Massif Central. This body is likely to be the source responsible for the volcanism. It could be interpreted as the top of a plume-type structure which is now in its cooling phase.  相似文献   

16.
Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method.
If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage.
The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults.  相似文献   

17.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

18.
Summary. A tripartite ocean-bottom seismograph array at the junction of the East Pacific Rise and Rivera Fracture Zone recorded an eathquake sequence, consisting of three main shocks ( m B= 4.3, 4.3 and 4.8) and numerous aftershocks from the fracture zone, in the distance range 35–50 km. Delineation of the rupture zones by aftershocks indicates that the first two main shocks took place on overlapping fault areas, while the third occurred over a fault area separated from the first by several kilometres. Both rupture zones were about 4 km long. Surface wave spectra indicate a shallow (about 3 km below the sea floor) source, as does OBS array phase velocity data. The seismic moments, obtained from teleseismic surface wave data, of 1.3, 2.1 and 2.8 × 1023 dyn cm, with the fault areas as delineated by aftershocks, imply a stress drop of about 8 bars for the main shocks. Aftershock sequences of each of the main shocks are similar, with a b -value of about 0.65. Teleseismic P travel times are similar to those from near-surface sources in Nevada.  相似文献   

19.
Summary. Bulletins of the International Seismological Centre (ISC) show very large residuals, up to 15 s early, for arrivals from events in the Tonga–Kermadec subduction zone to the New Zealand network of seismometers. The very early arrivals are confined to events south of about 22°S, and shallower than about 350 km. The waveforms show two distinct phases: an early, emergent, first phase with energy in the high-frequency band 2–10 Hz, and a distinct second phase, containing lower frequency energy, arriving at about the time predicted by JB tables.
The residuals are attributed to propagation through the cold, subducted lithosphere, which has a seismic velocity 5 per cent faster, on average, than normal. Ray tracing shows that the ray paths lie very close to the slab for events south of 22°S, but pass well beneath the slab for events further north, corresponding to the change in residual pattern. This characteristic of the ray paths is due to the curved shape of the seismic zone, and in particular to the bend in the zone where the Louisville ridge intersects the trench at 25°S.
The residuals can only be explained if the high velocity anomaly extends to a depth of 450 km in the region of the gap in deep seismicity from 32 to 36°S. The very high-frequency character of the first phase requires the path from the bottom of the slab to the stations to be of high Q , and to transmit 2–10 Hz energy with little attenuation.
The absence of low-frequency energy in the first phase is due to the narrowness of the high-velocity slab, which transmits only short-wavelength waves. The second phase, which contains low frequencies, is identified as a P -wave travelling beneath the subducted slab in normal mantle. There is no need to invoke any special structures, such as low-velocity waveguides or reflectors, to explain any of the observations. The S -wave arrivals show similar effects.  相似文献   

20.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号