首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we provide evidence for methane hydrates in the Taranaki Basin, occurring a considerable distance from New Zealand's convergent margins, where they are well documented. We describe and reconstruct a unique example of gas migration and leakage at the edge of the continental shelf, linking shallow gas hydrate occurrence to a deeper petroleum system. The Taranaki Basin is a well investigated petroleum province with numerous fields producing oil and gas. Industry standard seismic reflection data show amplitude anomalies that are here interpreted as discontinuous BSRs, locally mimicking the channelized sea-floor and pinching out up-slope. Strong reverse polarity anomalies indicate the presence of gas pockets and gas-charged sediments. PetroMod™ petroleum systems modelling predicts that the gas is sourced from elevated microbial gas generation in the thick slope sediment succession with additional migration of thermogenic gas from buried Cretaceous petroleum source rocks. Cretaceous–Paleogene extensional faults underneath the present-day slope are interpreted to provide pathways for focussed gas migration and leakage, which may explain two dry petroleum wells drilled at the Taranaki shelf margin. PetroMod™ modelling predicts concentrated gas hydrate formation on the Taranaki continental slope consistent with the anomalies observed in the seismic data. We propose that a semi-continuous hydrate layer is present in the down-dip wall of incised canyons. Canyon incision is interpreted to cause the base of gas hydrate stability to bulge downward and thereby trap gas migrating up-slope in permeable beds due to the permeability decrease caused by hydrate formation in the pore space. Elsewhere, hydrate occurrence is likely patchy and may be controlled by focussed leakage of thermogenic gas. The proposed presence of hydrates in slope sediments in Taranaki Basin likely affects the stability of the Taranaki shelf margin. While hydrate presence can be a drilling hazard for oil and gas exploration, the proposed presence of gas hydrates opens up a new frontier for exploration of hydrates as an energy source.  相似文献   

2.
 Closely spaced, single-beam bathymetric and side-scan sonar investigations on the northern slope of the western Svalbard insular platform have revealed the presence of a Late Quaternary slump complex forming a hanging-wall slump canyon near the head of the Malene Bukta (Malene Bay) bathymetric embayment in the northern continental margin. Repeated slump erosion may be responsible for development of this young feature and the Malene Bukta Embayment. Focusing of the slumping may be due to the trapping of gas at shallow sea-floor depths by gas hydrate, with the consequent formation of subjacent gas-rich, low shear-strength decollement zones. Faults have likely controlled the upward migration of gas into the younger sedimentary prism.  相似文献   

3.
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates “from above”. As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.  相似文献   

4.
A cluster of craterlike depressions in the central Barents Sea are several hundred meters across, have steep walls, and are cut into underlying Triassic rocks. Their formation is explained in relation to the glacial history of the region, and a possible model suggests that gas from a deeper, thermogenic source allowed a hydrate layer of considerable thickness to form during the Late Weichselian, when grounded ice covered the area and increased the hydrostatic pressure. After a rapid retreat of the marinebased ice sheet, the hydrates decomposed and the layer thinned rapidly until pressurized free gas, trapped below the hydrates, erupted and formed the sea-floor depressions.  相似文献   

5.
We investigate gas hydrate formation processes in compressional, extensional and un-faulted settings on New Zealand's Hikurangi margin using seismic reflection data. The compressional setting is characterized by a prominent subduction wedge thrust fault that terminates beneath the base of gas hydrate stability, as determined from a bottom-simulating reflection (BSR). The thrust is surrounded by steeply dipping strata that cross the BSR at a high angle. Above the BSR, these strata are associated with a high velocity anomaly that is likely indicative of relatively concentrated, and broadly distributed, gas hydrates. The un-faulted setting—sedimentary infill of a slope basin on the landward side of a prominent thrust ridge—is characterized by a strong BSR, a thick underlying free gas zone, and short positive polarity reflection segments that extend upward from the BSR. We interpret the short reflection segments as the manifestation of gas hydrates within relatively coarse-grained sediments. The extensional setting is a localized, shallow response to flexural bending of strata within an anticline. Gas has accumulated beneath the BSR in the apex of folding. A high-velocity zone directly above the BSR is probably mostly lithologically-derived, and only partly related to gas hydrates. Although each setting shows evidence for focused gas migration into the gas hydrate stability zone, we interpret that the compressional tectonic setting is most likely to contain concentrated gas hydrates over a broad region. Indeed, it is the only setting associated with a deep-reaching fault, meaning it is the most likely of the three settings to have thermogenic gas contributing to hydrate formation. Our results highlight the importance of anisotropic permeability in layered sediments and the role this plays in directing sub-surface fluid flow, and ultimately in the distribution of gas hydrate. Each of the three settings we describe would warrant further investigation in any future consideration of gas hydrates as an energy resource on the Hikurangi margin.  相似文献   

6.
Potential accumulations of gas hydrates in Alaminos Canyon Block 21 (AC21) in the Gulf of Mexico are thought to occur in a shallow sand-rich interval, stratigraphically separated from sources of free gas below the base of the gas hydrate stability zone (BGHSZ), by an intervening thick layer of clay- and silt-rich sediments. Availability of sufficient gas charge from depth, in addition to local biogenic sourcing is considered key to the formation of gas hydrates in the GHSZ. Implicitly, a detailed understanding of geometries associated with fault and fracture networks in relation to potential gas migration pathways can provide additional confidence that seismic amplitude anomalies are related to gas hydrate accumulations. Delineation of fault and fracture systems from high resolution seismic data in and below the gas hydrates stability zone (GHSZ) was performed using an automated algorithm—Ant Tracking. The capturing of small-scale detail has particular significance at AC21, revealing a pervasive network of typically small-extent discontinuities, indicative of fracturing, throughout this intervening clay- and silt-rich layer of mass-transport deposits (MTDs). Ant Tracking features appear to correlate, to some extent, with potential gas hydrate accumulations, supporting the concept that fracturing possibly provides migration pathways albeit via a tortuous, complex path. This study demonstrates that the Ant Tracking attribute, in conjunction with detailed seismic interpretation and analysis, can provide valuable evidence of potential gas migration pathways.  相似文献   

7.
The methane gas production potential from its hydrates, which are solid clathrates, with methane gas entrapped inside the water molecules, is primarily dependent on permeability characteristics of their bearing sediments. Moreover, the dissociation of gas hydrates, which results in a multi-phase fluid migration through these sediments, becomes mandatory to determine the relative permeability of both gaseous and aqueous fluids corresponding to different hydrate saturations. However, in this context, the major challenges are: (1) obtaining undisturbed in-situ samples bearing gas hydrates; and (2) maintenance of the thermodynamic conditions to counter hydrate dissociation. One of the ways to overcome this situation is synthesis of gas hydrates in laboratory conditions, followed by conducting permeability tests on them. In addition, empirical relationships that relate permeability of the gas hydrate bearing sediments to pore-structure characteristics (viz., pore size distribution and interconnectivity) can also be conceived. With this in view, a comprehensive review of the literature dealing with different techniques adopted by researchers for synthesis of gas hydrates, permeability tests conducted on the sediments bearing them, and analytical and empirical correlations employed for determination of permeability of these sediments was conducted and a brief account of the same is presented in this article.  相似文献   

8.
Previous studies of gas hydrate in the Dongsha area mainly focused on the deep-seated gas hydrates that have a high energy potential, but cared little about the shallow gas hydrates occurrences. Shallow gas hydrates have been confirmed by drill cores at three sites(GMGS2 08, GMGS2 09 and GMGS2 16) during the GMGS2 cruise, which occur as veins, blocky nodules or massive layers, at 8–30 m below the seafloor. Gas chimneys and faults observed on the seismic sections are the two main fluid migration pathways. The deep-seated gas hydrate and the shallow hydrate-bearing sediments are two main seals for the migrating gas. The occurrences of shallow gas hydrates are mainly controlled by the migration of fluid along shallow faults and the presence of deep-seated gas hydrates.Active gas leakage is taking place at a relatively high-flux state through the vent structures identified on the geophysical data at the seafloor, although without resulting in gas plumes easily detectable by acoustic methods.The presence of strong reflections on the high-resolution seismic profiles and dim or chaotic layers in the subbottom profiles are most likely good indicators of shallow gas hydrates in the Dongsha area. Active cold seeps,indicated by either gas plume or seepage vent, can also be used as indicators for neighboring shallow gas hydrates and the gas hydrate system that is highly dynamic in the Dongsha area.  相似文献   

9.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

10.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   

11.
2015~2016年在神狐新钻探区钻遇大量水合物岩心,证实南海北部神狐新钻探区具有较好的水合物成藏环境和勘探前景。结合2008~2009年该区采集的地震资料,我们对晚中新世以来细粒峡谷的沉积特征及其相应的水合物成藏模式进行了分析。通过对大量地震剖面进行解释,发现该区峡谷两侧的隆起上发育大量的滑塌体。本文通过岩心粒度分析,地震相识别分析和水合物测井响应分析等手段综合识别出对水合物成藏有控制作用的三种类型的滑塌体:原生滑塌体、峡谷切割滑塌体、和同生断裂滑塌体。结合沉积速率、流体流速分析和峡谷迁移等沉积学要素对滑塌体成因进行分析,认为峡谷切割滑塌体由于后期峡谷迁移对前期滑塌体切割形成的、同生断裂滑塌体是由于隆起区基底不平引起差异性沉降而形成的。不同类型的滑塌体发育位置不同:原生滑塌体常发育在隆起中坡度较缓的区域、峡谷切割成因滑塌体常发育在不定向迁移的峡谷两侧、同生断裂滑塌体常发育在隆起中坡度起伏较大的区域。三种类型滑塌及其相应的水合物成藏模式不同,其中原生滑塌体有利于水合物成藏,而另外两种类型的滑塌体由于其不能对自由气进行有效封堵而不利于水合物成藏。根据三种滑塌体对水合物成藏的响应指出在粗粒的含有孔虫粉砂岩储层上,覆盖细粒的泥岩对自由气进行封堵有利于水合物成藏,并且多层的泥岩覆盖是造成水合物稳定带中水合物多个分层成矿现象出现的原因。  相似文献   

12.
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.  相似文献   

13.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   

14.
A survey of the submarine Håkon Mosby mud volcano (HMMV) area by photo and video cameras permits the classification and mapping of sea-floor terrains. Approximate concentric zoning is seen in the distribution of the terrains, which correlates well with morphostructural elements of the mud volcano. A relatively limited biological community, dominated by tubeworms (Pogonophora and Polychaeta) and demersal fish, exists on the HMMV. Photo and video images show no evidence for gas bubbles in the water column, although methane is present in the mud volcano sediments. White patches, which comprise over 75% of the sea floor in some areas, are interpreted to be bacterial mats and/or gas hydrates.  相似文献   

15.
High-saturation (40–100%), microbial gas hydrates have been acquired by expedition GMGS2 from the Taixinan Basin. In this study, geochemical and microbial features of hydrate-containing sediments from the drilling cores (GMGS2-09 and GMGS2-16) were characterized to explore their relationships with gas hydrate formation. Results showed that the average TOC content of GMGS2-09 and GMGS2-16 were 0.45% and 0.63%, respectively. They could meet the threshold for in situ gas hydrate formation, but were not available for the formation of high-saturation gas hydrates. The dominant members of Bacteria at the class taxonomic level were Alphaproteobacteria, Bacilli, Bacteroidia, Epsilonproteobacteria and Gammaproteobacteria, and those in Archaea were Marine_Benthic_Group_B (MBGB), Miscellaneous_Crenarchaeotic_Group (MCG), Group C3, Methanomicrobia and Methanobacteria. Indicators of microbes associated with thermogenic organic matter were measured. These include: (1) most of the dominant microbes had been found dominant in other gas hydrates bearing sediments, mud volcanos as well as oil/coal deposits; (2) hydrogenotrophic methanogens and an oilfield-origin thermophilic, methylotrophic methanogen were found dominant the methanogen community; (3) hydrocarbon-assimilating bacteria and other hyperthermophiles were frequently detected. Therefore, thermogenic signatures were inferred existed in the sediments. This deduction is consistent with the interpretation from the seismic reflection profiles. Owing to the inconsistency between low TOC content and gas hydrates with high saturation, secondary microbial methane generated from the bioconversion of thermogenic organic matters (oil or coal) was speculated to serve as enhanced gas flux for the formation of high-saturation gas hydrates. A preliminary formation model of high-saturation biogenic gas hydrates was proposed, in which diagenesis processes, tectonic movements and microbial activities were all emphasized regarding to their contribution to gas hydrates formation. In short, this research helps explain how microbial act and what kind of organic matter they use in forming biogenic gas hydrates with high saturations.  相似文献   

16.
In this study, we present the results of the combined analyses of ocean bottom seismometer and multi-channel seismic reflection data collection offshore southwestern Taiwan, with respect to the presence of gas hydrates and free gas within the accretionary wedge sediments. Estimates of the compressional velocities along EW9509-33 seismic reflection profile are obtained by a series of pre-stack depth migrations in a layer stripping streamlined Deregowski loop. Strong BSR is imaged over most of the reflection profile while low velocity zones are imaged below BSR at several locations. Amplitude versus angle analysis that are performed within the pre-stack depth migration processes reveal strong negative P-impedance near the bottom of the hydrate stability zone, commonly underlain by sharp positive P impedance layers associated with negative pseudo-Poisson attribute areas, indicating the presence of free gas below the BSR. Ray tracing of the acoustic arrivals with a model derived from the migration velocities generally fits the vertical and hydrophone records of the four ocean-bottom seismographs (OBS). In order to estimate the Poisson’s ratios in the shallow sediments at the vicinity of the OBSs, we analyze the mode-converted arrivals in the wide-angle horizontal component. P-S mode converted reflections are dominant, while upward P-S transmissions are observed at large offsets. We observe significant compressional velocity and Poisson’s ratio pull-down in the sediment below the BSR likely to bear free gas. When compared to Poisson’s ratio predicted by mechanical models, the values proposed for the OBSs yield rough estimates of gas hydrate saturation in the range of 0–10% in the layers above the BSR and of free gas saturation in the range of 0–2% just below the BSR.  相似文献   

17.
Geochemical properties of gas hydrate accumulation associated with an active gas vent on the continental slope offshore northeast Sakhalin Island in the Sea of Okhotsk have been investigated. The pore water chemistry data suggest that the gas hydrates (GHs) were formed in an environment of upward-migrating fluid combined with a mechanism of pore water segregation. The upward infiltration of water enriched mainly by Cl and K+ species appears to occur on the background of earlier diagenesis processes within the gas vent sediments. The GHs were formed from water with chlorinity ranging from 530 to 570 mM. The 18O and D of GH water varied from –1.4 to –1.8 and from –13 to –18, respectively, representing a mix of seawater and infiltrating fluid water. A complex interaction of pore water, water of ascending fluid and segregated pore water during hydrate formation is also supported by water content measurements and observed gas hydrate structure. The direction of segregated water is opposite to upward fluid migration. Decreasing activity of the gas vent is inferred by comparing the present top of the recovered hydrate layer with previous observations.  相似文献   

18.
Small amounts of free gas in interstitial sediment pores are known to significantly lower compressional (P-) wave velocity (Vp). This effect, combined with moderately elevated Vp from the presence of gas hydrates, is usually thought to be the cause for the often observed strong negative reflection coefficients of bottom simulating reflections (BSRs) at the base of gas hydrate stability (BGHS). At several locations however, weak BSRs have been observed, which are difficult to reconcile with a presence of gas in sediment pores. We here present a rock physics model for weak BSRs on the Hikurangi Margin east of New Zealand. Thin sections of a fine-grained mudstone sample from a submarine outcrop in the vicinity of a weak BSR show macroscopic porosity in the form of fractures and intrafossil macropores. We apply the Kuster-Toksöz theory to predict seismic velocities for a rock with water-saturated interstitial micropores and gas or hydrates in macroscopic pore space simulating fractures or compliant macropores. We match field observations of a weak BSR with a reflection coefficient of −0.016 with two end-member models; (1) rocks with gas hydrate-filled voids with a concentration of <4% of bulk sediment overlying water-filled voids, or (2) fully gas-saturated voids at a concentration of <2% beneath water-filled voids. A natural system is likely to consist of a combination of these end-members and of macroporosity filled with a mixture of water and gas or hydrate. Our results suggest weak BSRs may be caused by gas hydrate systems in fractures and macropores of fine-grained sediments with fully water-saturated interstitial pore space. Gas may be supplied into the macroscopic pore space by diffusion-driven short-range migration of methane generated within the gas hydrate stability field or, our favoured model based on additional geologic considerations, long-range advective migration from deeper sources along fractures.  相似文献   

19.
从勘探技术和资源评价的角度综述了甲烷水合物生成和聚集的重要特征, 如地震反射剖面、测井曲线资料、地球化学特点等以及对未知区的地质勘探和选区评价 .甲烷水合物在地震剖面上主要表现为BSR(似海底反射)、振幅变形(空白反射)、速度倒置、速度-振幅结构(VAMPS)等,大规模的甲烷水合物聚集可以通过高电阻率(>100欧姆.米)声波速度、低体积密度等号数进行直接判读.此项研究实例表明,沉积物中典型甲烷水合物具有低渗透性和高毛细管孔隙压力特点,地层孔隙水矿化度也呈异常值,并具有各自独特的地质特征.现场计算巨型甲烷水合物储层中甲烷资源量的方法可分为:测井资料计算法公式为:SW=(abRw/φm.Rt)1/n;地震资料计算法公式为:ρp=(1-φ)ρm+(1-s)φρw+sφρh、VH=λ.φ.S.对全球甲烷水合物总资源量预测的统计达20×1015m3以上.甲烷水合物形成需满足高压、低温条件,要求海水深度>300 m.因此,甲烷水合物的分布严格地局限于两极地区和陆坡以下的深水地区,并具有3种聚集类型:1.永久性冻土带;2.浅水环境;3.深水环境.深海钻探计划(DSDP)和大洋钻探计划(ODP)已在下述10个地区发现大规模的甲烷水合物聚集,他们是:秘鲁、哥斯达黎加、危地马拉、墨西哥、美国东南大西洋海域、美国西部太平洋海域、日本海域的两个地区、阿拉斯加和墨西哥湾地区.在较浅水沉积物岩心样中发现甲烷水合物的地区,包括黑海、里海、加拿大北部、美国加里福尼亚岸外、墨西哥湾北部、鄂霍茨克海的两个地区.在垂向上,甲烷水合物主要分布于海底以下2 000 m以浅的沉积层中.最新统计表明又主要分布于二个深度区间:200~450 m和700~920 m,前者是由ODP995~997站位发现的;后者在加拿大麦肯齐河三角洲马立克2L-38号井中897~922 m处发现.中国海域已发现多处甲烷水合物可能赋存地区,包括东沙群岛南部、西沙海槽北部、西沙群岛南部以及东海海域地区.姚伯初报道了南海地区9处地震剖面速度异常值的发现,海水深度为420~3 920 m,海洋地质研究所则在东海海域解释了典型BSR反射的剖面,具有速度异常、弱振幅、空白反射、与下伏反射波组具不整合接触关系(VAMPS)等,大致圈定了它们的分布范围,表明在中国海域寻找甲烷水合物具有光明的前景.  相似文献   

20.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号