首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At dip equatorial stations in the Indian zone, spread-F conditions are known to develop preferentially around midnight during the June solstice (northern summer) months of low solar activity, in association with a distinct increase in F layer height. It is currently held that this onset of spread-F far away from the sunset terminator is due to the generalised Rayleigh-Taylor instability mechanism, with the gravitational and cross-field instability factors (and hence F layer height) playing important roles. We have studied the quarter-hourly ionograms of Kodaikanal (10.2°N; 77.5°E; dip 4°N) for the northern summer months (May-August) of 1994 and 1995 to ascertain the ambient ionospheric conditions against which the post-midnight onset of spread-F takes place. A data sample of 38 nights with midnight onset of spread-F and 34 nights without spread-F is used for the purpose. It is found that a conspicious increase in F layer height beginning around 2100 LT occurs on nights with spread-F as well as without spread-F. This feature is seen in the nocturnal pattern of F layer height on many individual nights as well as of average F layer height for the two categories of nights. The result strongly suggests that the F layer height does not play a pivotal role in the midnight onset of spread-F during the June solstice of solar minimum. The implications of this finding are discussed.  相似文献   

2.
化学物质释放激发中低纬扩展F的数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
利用离子和电子动量方程、连续性方程以及电流连续性方程建立了适合描述中低纬spread-F发展的物理模型,并对模型进行了数值求解,讨论了利用H2O释放来激发电离层Rayleigh-Taylor不稳定性的可能性. 结果表明,电离层处于不稳定状态时,H2O在电离层底部释放后,造成电子的大量消耗,增强了峰值高度以下电子的密度梯度,有利于spread-F的发展,在spread-F发展的过程中,释放中心附近会形成电子密度的消耗区,两侧出现密度的增强区;而电离层比较稳定时,初始扰动会逐渐稳定下来,但化学物质释放仍能造成电子较长时间、较大范围的扰动.  相似文献   

3.
A new interferometric imaging technique has been used at Jicamarca to study the morphology and dynamics of plasma irregularities occurring during spread F conditions. The technique produces two-dimensional, in-beam images of the coherent scatter from these irregularities, instantaneously mapping the structure of the underlying plasma instabilities in the equatorial plane. We present sequences of images depicting backscatter from bottom-type layers, bottomside layers, and topside plumes drifting and rising through the ionospheric regions illuminated by the Jicamarca radar. The high spatial and temporal resolution of the images permits us to observe dynamical phenomena missed by conventional fixed- and steered-beam techniques. The new images show evidence of intermediate- and large-scale plasma depletions bifurcating and pinching off from the bottomside as they ascend. Analytic models are presented to describe these dynamical effects. The images also differentiate between bottom-type and bottomside spread F layers, the former being shown to have much smaller scale primary waves than the latter. Ample evidence of secondary plasma instabilities appear throughout the images. The consequences of these secondary instabilities and of shear flow are discussed.  相似文献   

4.
A unified picture of plasma irregularities in equatorial spread F is developed from the analysis of satellite, sounding rocket, and coherent scatter radar observations. The coherent scatter data are analyzed using a new in-beam radar imaging technique that permits direct comparison between radar data, in situ data, and computer simulations of the irregularities. Three varieties of irregularities, all produced by ionospheric interchange instabilities, are found to occur. Thin bottom-type layers are composed of waves with primary transverse wavelengths less than about 1 km and with significant parallel wavenumbers. These exist on magnetic flux tubes controlled by the E region dynamo and drift westward in the postsunset ionosphere. A nonlocal analysis is used to calculate their linear growth rate. When the F region dynamo takes control of the flux tube, bottomside irregularities can emerge. These are more robust irregularities with longer primary wavelengths and which exhibit greater vertical development. Nonlinear analyses explain the appearance of steepened structures in rocket observations and solitary waves in satellite observations of bottomside layers. The one-dimensional spectra of these irregularities obey power laws but are anisotropic and have variable spectral indices and spectral breaks. Very strong polarization electric fields can eject large regions of deeply depleted plasma through the F peak and form topside irregularities. Theoretical calculations supported by satellite data show that ion inertia may become important for topside irregularities. The one-dimensional spectra of irregularities in the inertial regime obey a k−5/3 power law, but strong plasma inhomogeneity implies that Kolmogorov weak turbulence is not the explanation. Topside depletions are shown to bifurcate and also to pinch off from the bottomside.  相似文献   

5.
The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E–W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). lonosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (f0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.  相似文献   

6.
《Journal of Atmospheric and Solar》2003,65(14-15):1309-1314
Equatorial spread-F (ESF) dynamics is studied based on quarter-hourly series of ionograms recorded in West Africa during the year December 1994 to November 1995. The time evolution of F layer at the typical equatorial site OUAGADOUGOU (Burkina Faso) differs slightly from that at DAKAR (Senegal), located at the northern edge of the magnetic equatorial belt. Comparing ESF occurrences at both stations with the pre-sunrise ones at FORTALEZA (Brazil), we find generally antisymmetric variations on both sides of the Atlantic, except for a common December solstice maximum. We stress the convergence of the multiple-scale morphologies drawn from new radars with those from high-quality ionosonde density (h′,t) plots. This revives the analysis of ESF dynamics and points toward long-term network studies of ESF coupling phenomena.  相似文献   

7.
We present experimental evidence and modeling results which indicate that eastward thermospheric wind is the primary controlling factor of equatorial spread-F initiation in the post-sunset ionosphere. Eastward wind-driven Pedersen currents are able to polarize F-region density perturbations with westward tilting wavefronts into rapidly growing modes to trigger the formation of spread-F bubbles. The described process is so rapid that seeding requirements of spread-F initiation by external factors such as gravity waves are effectively eliminated.  相似文献   

8.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

9.
《Journal of Atmospheric and Solar》2002,64(12-14):1409-1412
Recent studies using model calculation and ionospheric observations have revealed the existence of an additional layer in the topside equatorial ionosphere, the F3 layer. The observations using bottomside ionograms from locations close to the magnetic equator in Brazilian region have shown that the occurrence of the layer is very high from December to February (local summer) and from June to August (local winter). In fact, for the year 1995 the occurrence of the F3 layer is >75% during the months of January, February and December, and it is >65% for the period of June, July and August (Geofisica Int. 39 (2000) 57). In this work, we use 25 years of data for the months of January and August to investigate how the layer occurrence varies with the magnetic dip angle and solar activity.  相似文献   

10.
HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°2463N–5°3738W) during the International Equatorial Electrojet Year (1993–1994). The HF radar is a high–resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.  相似文献   

11.
重力波、中性风场、电场是激发电离层扩展F的主要影响因子,本文基于中低纬电离层扩展F发展的物理模型,通过电场强度、背景风场对扩展F影响作用的分析和经验对比,首先验证了模型的有效性,后借助该模型数值模拟了给定背景环境下三种尺度初始电子密度扰动条件下扩展F的发展情况,同时研究了利用化学物质释放实现一定尺度扰动,进而激发扩展F的过程.结果表明,较强的背景电场、东向风场有利于扩展F的形成和抬升,与经验结论相吻合;电离层从被作用初始扰动到激发扩展F的过程中存在拐点效应,拐点之后扩展F被激发形成并且抬升迅速,同时短波长扰动相对于长波长扰动更有利于扩展F的激发和发展;化学物质H_2O释放通过耗散电子密度,形成了一定尺度扰动并诱发了扩展F的形成,该方法可作为一种人工激发扩展F的探索手段.  相似文献   

12.
Ionospheric effects of a large number (51) of severe geomagnetic storms are studied using total electron content (TEC) and VHF/UHF scintillation data from Calcutta, situated near the northern crest of equatorial ionization anomaly and equatorial spread-F (ESF) data from Kodaikanal. The susceptibility of the equatorial ionosphere to develop storm time plasma density irregularities responsible for ESF and scintillation is found to be largely modulated by the local times of occurrences of main and recovery phases as seen in the Dst index. While inhibition of premidnight scintillation for lower TEC values compared to the quiet day averages is omnipresent, occurrence of scintillation for enhancements of TEC is largely dependent on initiation time and amplitude of the said deviations. An overall reduction in threshold values of h′F for observing storm induced ESF and scintillation compared to reported quiet time values is noted. The results are discussed in terms of storm time variabilities in electric fields, neutral wind system and composition changes.  相似文献   

13.
This work presents a new examination of the hypothesis regarding the equatorial origin of low He+ density plasma depletions (or subtroughs). For this purpose, we have conducted a detailed comparative analysis of longitudinal variations in the occurrence probabilities of subtroughs in both hemispheres and variations in the occurrence probabilities of equatorial F-region irregularities (EFIs), equatorial spread F (RFS and ESF), and equatorial plasma bubbles (EPBs). Taking into consideration the seasonal dependence and some peculiarities of magnetic field variations in different hemispheres, a conclusion has been reached regarding the similarity between longitudinal statistical occurrences of subtroughs and equatorial ionospheric F-region irregularities. In addition, another piece of evidence in favor of the similarity of the nature of the above-mentioned phenomena has been obtained. We have got a confirmation once again that low He+ density depletions (or subtroughs) can be rightfully considered as equatorial plasma “bubbles,” which can be observed at altitudes of the topside ionosphere as depletions in the He+ density.  相似文献   

14.
Observations of mesospheric winds over a period of four years with the partial reflection radar at Tirunelveli (8.7°N, 77.8°E), India, are presented in this study. The emphasis is on describing seasonal variabilities in mean zonal and meridional winds in the altitude region 70–98 km. The meridional winds exhibit overall transequatorial flow associated with differential heating in the Northern and Southern Hemispheres. At lower altitudes (70–80 km) the mean zonal winds reveal easterly flow during summer and westerly flow during winter, as expected from a circulation driven by solar forcing. In the higher altitude regime (80–98 km) and at all altitudes during equinox periods, the mean zonal flow is subjected to the semi-annual oscillation (SAO). The interannual variability detected in the occurrence of SAO over Tirunelveli has also been observed in the data sets obtained from the recent UARS satellite mission. Harmonic analysis results over a period of two years indicate the presence of long-period oscillations in the mean zonal wind at specific harmonic periods near 240, 150 and 120 days. Results presented in this study are discussed in the context of current understanding of equatorial wave propagation.  相似文献   

15.
Equatorial plasma bubbles (EPBs) are field-aligned depletions of F-region ionospheric plasma density that grow from irregularities caused by the generalized Rayleigh–Taylor instability mechanism in the postsunset equatorial sector. Although they have been studied for some decades, they continue to be an important subject of both experimental and theoretical investigations because of their effects on trans-ionospheric radio communications.In this work, calibrated data of slant total electron content (sTEC) taken every 10 min from EGNOS System Test Bed Brazzaville (Congo), Douala (Cameroon), Lome (Togo) and N’Djamena (Chad), and International GNSS Service Ascension Island, Malindi (Kenya), and Libreville (Gabon), stations are used to detect plasma bubbles in the African equatorial region during the first 6 months of 2004. To identify these irregularities, the trend of every curve of sTEC against time is subtracted from the original data. The size of the EPBs is estimated by measuring its amplitude in the de-trended time variation of sTEC.  相似文献   

16.
Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI) and Wind Imaging Interferometer (WINDII) wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS). There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40° S and 40°N.  相似文献   

17.
Complex ionograms from the Intercosmos-19 satellite with strongly delayed and sometimes multiple reflections from the Earth are considered. An analysis shows that these reflections are usually associated with sharp horizontal gradients of the ionospheric plasma. Such gradients are formed on the walls of the main ionospheric trough, at peaks of electron density, and on the inner and, especially frequently, on the outer slope of the crest of the equatorial anomaly. In one case, distant reflections from the Earth (DREs) formed near the equator, when the satellite in perigee was lower than the F2-layer maximum height. A quantitative interpretation of the most typical cases of DREs is given based on ray tracing. For this purpose, the model of the ionosphere under the satellite is developed, ray paths are calculated, and model ionograms are formed. The good agreement between experimental and model ionograms allows us to conclude that the task of interpreting complicated ionograms obtained by Intercosmos-19 with DRE has been solved successfully.  相似文献   

18.
Study of sporadic-E clouds by backscatter radar   总被引:1,自引:0,他引:1  
It is shown that swept-frequency backscatter ionograms covering a range of azimuths can be used to study the dynamics of sporadic-E clouds. A simple technique based on analytic ray tracing can be used to simulate the observed narrow traces associated with Es patches. This enables the location and extent of the sporadic-E clouds to be determined. The motion of clouds can then be determined from a time sequence of records. In order to demonstrate the method, results are presented from an initial study of 5 days of backscatter ionograms from the Jindalee Stage B data base obtained during March-April 1990. Usually 2–3 clouds were observed each day, mainly during the evening and up to midnight. The clouds lasted from 1–4 h and extended between 30°–80° in azimuth and 150–800 km in range. The clouds were mostly stationary or drifted generally westward with velocities of up to 80 ms–1. Only one cloud was observed moving eastward.  相似文献   

19.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip latitude 5.5°N) to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150/300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165/178 km), in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200/330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms–1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.  相似文献   

20.
A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s−1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s−1 and 700 m s−1. At velocities greater than 700 m s−1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号