首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract— Miono et al. (1990) and Miono and Nakanishi (1994) have proposed that the build‐up of natural thermoluminescence (TL) in a drained layer directly below the meteorite fusion crust can be used to determine terrestrial ages of meteorites in the 40 to 200 ka range. We have measured the natural TL of the drained layer of 15 meteorites. The data indicate that this technique could be used to determine terrestrial ages of meteorites with ages <200 ka, after which TL equilibrium is reached. Comparison of TL build‐up with terrestrial ages for a suite of Antarctic meteorites suggests that the meteorites have been exposed to temperatures of 0 to 5 °C. The close correspondence between natural TL levels and surface exposure TL growth curves suggest that Allan Hills meteorites with ages <200 ka have spent a significant portion of their terrestrial history exposed on the ice surface, rather than being buried in the ice sheet. The technique is, however, sensitive to thermal history; and, for Antarctic meteorites with terrestrial ages <200 ka, natural TL of the drained zone largely reflects exposure on the ice surface.  相似文献   

2.
Abstract Research on meteorite finds, especially those from the Antarctic and from desert regions in Australia, Africa, and America, has become increasingly important, notably in studies of possible changes in the nature of the meteorite flux in the past. One important piece of information needed in the study of such meteorites is their terrestrial age which can be determined using a variety of methods, including 14C, 36Cl, and 81Kr. Natural thermoluminescence (TL) levels in meteorites can also be used as an indicator of terrestrial age. In this paper, we compare 14C-determined terrestrial ages with natural TL levels in finds from the Prairie States (central United States), a group of finds from Roosevelt County (New Mexico, USA), and a group from the Sahara Desert. We find that, in general, the natural TL data are compatible with the 14C-derived terrestrial ages using a 20 °C TL decay curve for the Prairie States and Roosevelt County and a 30 °C decay curve for the Saharan meteorites. We also present TL data for a group of meteorites from the Sahara desert which has not been studied using cosmogenic radionuclides. Within these data there are distinct terrestrial age clusters which probably reflect changes in meteorite preservation efficiency over ~ 15, 000 years in the region.  相似文献   

3.
Abstract— We have previously identified a subgroup of Antarctic H chondrites that are significantly different from H chondrites among the modern falls in terms of induced thermoluminescence (TL), metallographic cooling rate, and cosmogenic inert gas contents. Here we examine their terrestrial and thermal history as apparent in their natural TL and radioactive cosmogenic isotope abundances. These meteorites have a tendency towards high 26Al activities and fairly short 14C and 36Cl terrestrial ages (generally <100 ka). They also sometimes exhibit unusually high natural TL levels, which we have previously interpreted as indicating orbital evolution from perihelia >1.2 AU to ~1 AU within the last <105 years. We suggest that the nature of the meteorites falling to Earth is not independent of time but depends on stochastic events, such as the breakup of parent bodies and recent variations in orbit.  相似文献   

4.
Abstract— We determined terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica, on the basis of the concentrations of cosmogenic 10Be (t½; = 1.51 Ma), 26Al (t½; = 0.705 Ma), and 36Cl (t½; = 0.301 Ma). After an initial 26Al γ-ray survey of 91 meteorites suggested that many have terrestrial ages >0.1 Ma, we selected 62 meteorites for 10Be and 26Al measurements by accelerator mass spectrometry (AMS) and measured 36Cl in twelve of those. Low terrestrial ages (<0.1 Ma) were found for ~60% of the meteorites, whereas all others have ages between 0.1 and 0.5 Ma, except for one exceptional age of >2 Ma (Welten et al., 1997). Our major conclusions are: (1) The Lewis Cliff H-chondrites show similar ages to those from the Allan Hills icefields, but the L-chondrites are about a factor of 2 younger than those from Allan Hills, which indicates that Lewis Cliff is a younger stranding area. (2) The terrestrial age distributions at different parts of the Lewis Cliff stranding area generally agree with simple meteorite concentration models, although differences in weathering rate may also play a role. (3) We confirm that meteorites with natural thermoluminescence (TL) levels >80 krad are associated with low terrestrial ages (Benoit et al., 1992) but conclude that natural TL levels <80 krad can not be used to calculate the terrestrial age of a meteorite. Natural TL levels do seem useful to estimate relative terrestrial ages of large groups of meteorites and to determine differences in the surface exposure age of paired meteorite fragments. (4) Of the 62 meteorites measured with AMS, 31 were assigned to 11 different pairing groups, mainly on the basis of their cosmogenic nuclide record. The meteorites are estimated to represent between 42 and 52 distinct falls.  相似文献   

5.
We report on the first meteorite search campaign in the United Arab Emirates (UAE). The geology and proximity of our search region suggest that it is the north‐western extension of the Oman meteorite fields. We found 26 ordinary chondrites, bringing the total number of official meteorites from the UAE to 28. The campaign was organized and conducted in close cooperation with the UAE government and the main masses of the meteorites remained in the country where they will become part of an exhibition. The bulk composition of five meteorite and three soil samples indicates an uptake of U, Mo, Sr, Ba, Li, and Pb from the soil into the meteorites during terrestrial weathering. Terrestrial ages determined from 14C decay of 21 meteorites range from recent falls to 24.4 ka, with two meteorites having >37 ka and approximately 39 ka, respectively. Weak correlations between weathering degree, meteorite bulk chemical composition, and terrestrial age suggest highly localized weathering conditions, possibly related to abundant occurrences of sabkhas in the search region.  相似文献   

6.
Abstract— Natural and induced thermoluminescence (TL) data are reported for 12 meteorites recovered from the Allan Hills region of Antarctica by the European field party during the 1988/89 field season. The samples include one with extremely high natural TL, ALH88035, suggestive of exposure to unusually high radiation doses (i.e., low degrees of shielding), and one, ALH88034, whose low natural TL suggests reheating within the last 105 years. The remainder have natural TL values suggestive of terrestrial ages similar to those of other meteorites from Allan Hills. ALH88015 (L6) has induced TL data suggestive of intense shock. TL sensitivities of these meteorites are generally lower than observed falls of their petrologic types, as is also observed for Antarctic meteorites in general. Acid-washing experiments indicate that this is solely the result of terrestrial weathering rather than a nonterrestrial Antarctic—non-Antarctic difference. However, other TL parameters, such as natural TL and induced peak temperature-width, are unchanged by acid washing and are sensitive indicators of a meteorite's metamorphic and recent radiation history.  相似文献   

7.
Abstract— We have measured the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl (half-lives 1.51 Ma, 716 ka, and 300 ka, respectively) in two different laboratories by accelerator mass spectrometry (AMS) techniques, as well as concentrations and isotopic compositions of stable He, Ne and Ar in the Antarctic H-chondrite Allan Hills (ALH) 88019. In addition, nuclear track densities were measured. From these results, it is concluded that the meteoroid ALH 88019 had a preatmospheric radius of (20 ± 5) cm and a shielding depth for the analyzed samples of between 4 and 8 cm. Using calculated and experimentally determined production rates of cosmogenic nuclides, an exposure age of ~40 Ma is obtained from cosmogenic 21Ne and 38Ar. The extremely low concentrations of radionuclides are explained by a very long terrestrial age for this meteorite of 2 ± 0.4 Ma. A similarly long terrestrial age was found so far only for the Antarctic L-chondrite Lewis Cliff (LEW) 86360. Such long ages establish one boundary condition for the history of meteorites in Antarctica.  相似文献   

8.
Abstract– We have investigated the terrestrial ages, or residence times, of 78 meteorites (representing 73 discrete falls) recovered in Western Australia, and one from South Australia, using both 14C measurements and also 14C/10Be. The samples studied included two ureilites, one CK and one EL chondrite. We have included 10Be measurements from 30 meteorites, including some meteorites for which the 14C terrestrial age was previously determined. We find that the 14C/10Be terrestrial ages are more precise than 14C alone, as we can correct for shielding effects. In general, the two different age determinations age by 14C–10Be are precise to 0.5–1 ka and 14C alone within 1–2 ka. However, measurement of the 14C age alone gives good agreement with the 14C–10Be for most samples. The study of the terrestrial ages of meteorites gives us useful information concerning the storage and weathering of meteorites and the study of fall times and terrestrial age. We have compared the terrestrial ages to weathering, degree of oxidation (estimated from Mössbauer studies) and Δ17O. In this study, we found that weathering is not well correlated with terrestrial age for Nullarbor meteorites. However, there is a good correlation between degree of oxidation and Δ17O. The implications for the study of terrestrial ages and weathering from other desert environments will be discussed.  相似文献   

9.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   

10.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be (half-life = 1.51 × 106 a), 26Al (7.05 × 105 a) and 36Cl (3.01 × 105 a) in Lewis Cliff (LEW) 86360, an L-chondrite from the Lewis Cliff stranding area, East Antarctica. In addition, the concentrations and isotopic compositions of He, Ne and Ar were measured. The combined results yield a terrestrial age of 2.35 ± 0.15 Ma. Only one other stony meteorite with a similar terrestrial age (~2 Ma) is known from the Allan Hills stranding area (ALH 88019), whereas all previously dated stony meteorites from Antarctica are younger than 1 Ma. We argue that LEW 86360 spent most of its terrestrial residence time deep inside the ice, near the base of the glacier, where ice flow rates are much lower than at the surface. The terrestrial ages of LEW 86360 and ALH 88019 are consistent with existing hypotheses concerning the stability and persistence of the East Antarctic ice sheet.  相似文献   

11.
We have investigated 128 14C‐dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section‐based weathering degrees, and for chemical weathering parameters as analyzed with handheld X‐ray fluorescence. These 128 14C‐dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age‐frequency distribution for the whole meteorite population.  相似文献   

12.
Abstract We report on a series of 27 14C terrestrial ages of meteorites from four states in the central and southwestern USA. These results were compared to the earlier work of Boeckl (1972). Our results showed that the weathering rate for destruction of meteorites is lower than suggested by Boeckl (1972). We estimated a “half-life” for removal of meteorites of about 10 to 15 ka, similar to that derived for Roosevelt County meteorites. We also studied the weathering of these meteorites compared to terrestrial age. Only a weak correlation was observed, and for these meteorites the degree of weathering can only be taken as a weak indicator of terrestrial residence time. We also measured the δ 13C and 14C and amount of weathering-product carbonates which show some interesting variations with the length of time the meteorites have been exposed to weathering.  相似文献   

13.
Abstract— We measured the concentrations of 10Be, 26Al, 36Cl, 41Ca and 14C in the metal and/or stone fractions of 27 Antarctic chondrites from Frontier Mountain (FRO), including two large H‐chondrite showers. To estimate the pre‐atmospheric size of the two showers, we determined the contribution of neutron‐capture produced 36Cl (half‐life = 3.01 times 105 years) and 41Ca (1.04 times 105 years) in the stone fraction. The measured activities of neutron‐capture 36Cl and 41Ca, as well as spallation produced 10Be and 26Al, were compared with Monte Carlo‐based model calculations. The largest shower, FRO 90174, includes eight fragments with an average terrestrial age of (100 ± 30) × 103 years; the neutron‐capture saturation activities extend to 27 dpm/kg stone for 36Cl and 19 dpm/kg stone for 41Ca. The concentrations of spallation produced 10Be, 26Al and 36Cl constrain the radius (R) to 80–100 cm, while the neutron‐capture 41Ca activities indicate that the samples originated from the outer 25 cm. With a pre‐atmospheric radius of 80–100 cm, FRO 90174 is among the largest of the Antarctic stony meteorites. The large pre‐atmospheric size supports our hypothesis that at least 50 of the ~150 classified H5/H6‐chondrites from the Frontier Mountain stranding area belong to this single fall; this hypothesis does not entirely account for the high H/L ratio at Frontier Mountain. The smaller shower, FRO 90001, includes four fragments with an average terrestrial age of (40 ± 10) × 103 years; they contain small contributions of neutron‐capture 36Cl, but no excess of 41Ca. FRO 90001 experienced a complex exposure history with high shielding conditions in the first stage (150 < R < 300 cm) and much lower shielding in the second stage (R < 30 cm), the latter starting ~1.0 million years (Ma) ago. Based on the measured 10Be/21Ne and 26Al/21Ne ratios, the cosmic‐ray exposure ages of the two showers are 7.2 ± 0.5 Ma for FRO 90174 and 8 ± 1 Ma for FRO 90001. These ages coincide with the well‐established H‐chondrite peak and corroborate the observation that the exposure age distribution of FRO H‐chondrites is similar to that of non‐Antarctic falls. In addition, we found that corrections for neutron‐capture 36Ar (from decay of 36Cl) result in concordant 21Ne and 38Ar exposure ages.  相似文献   

14.
Abstract— We have measured a surprisingly long terrestrial age of 410,000 ±45,0020,000 yr (410 ±2045ka) for basaltic eucrite Río Cuarto 001 using accelerator mass spectrometry of 26Al, 36Cl, and 41Ca. Though many meteorites are known to have survived for tens or hundreds of ka in Antarctica or hot deserts, the mean annual precipitation of 815 mm in Río Cuarto, Cordoba Province, Argentina, makes the long survival of this meteorite remarkable. We propose two explanations for the exceptional preservation of Río Cuarto 001. First, the meteorite contains only trace amounts of metal, so the weathering and oxidation of metallic Fe, which commonly destroys chondrites, is ineffective in this case. Second, the meteorite was found in a relatively young deflation basin, and may have been exhumed only recently from beneath a protective layer of soil. Insofar as the survival on Earth of Río Cuarto 001 is due to environmental factors, there may be other meteorites with comparably long terrestrial ages still to be discovered in the vicinity.  相似文献   

15.
Abstract— The enrichment of F on Antarctic meteorites is the result of their exposure to the atmosphere, and its measurement allows a subdivision of the terrestrial age into a duration of exposure on the ice and the time a meteorite was enclosed by the ice. In many cases, the periods of surface exposure are only small fractions of the terrestrial ages of meteorites collected in Antarctica. The enrichment of F on the surfaces of Antarctic achondrites was investigated by means of nuclear reaction analysis (NRA): scanning proton beams with an energy of 2.7 and 3.4 MeV were used to induce the reactions 19F(p,αγ)16O and 19F(p, p'γ)19F, respectively. Gamma signals proportional to the F content were measured. The following Antarctic achondrites were investigated: Martian meteorite ALH 84001; diogenite ALHA77256; the eucrites ALHA81011 and ALHA78132; and in addition, the H5 chondrite ALHA79025. For ALH 84001, our data indicate a period of exposure on the ice of <500 years. Thus, this specimen was enclosed in the ice >95% of its terrestrial age of 13 000 years.  相似文献   

16.
Abstract— We present data for the cosmogenic nuclides 10Be and 26Al in a suite of 24 extraterrestrial spherules, collected from Antarctic moraines and deep sea sediments. All of the 10 large spherules collected in glacial till at Lewis Cliff are extraterrestrial. As in earlier work, the great majority of particles show prominent solar cosmic-ray (SCR) production of 26Al, indicating bombardment ages on the order of 106 years or even longer. These long ages are in direct contradiction to model ages for small particles in the inner Solar System and may require reconsideration of models of small particle lifetimes. A small fraction of the particles so far measured (6/42) possess cosmogenic radionuclide patterns consistent with predictions for meteoroid spall droplets. We believe that most of the spherules were bombarded in space primarily as bodies not much larger than their present size. The content of in situ produced 10Be and 26Al in quartz pebbles in the same moraine suggests that these spherules may have on average a significant terrestrial age.  相似文献   

17.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   

18.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

19.
Abstract— We have obtained minimum age estimates for the sand units underlying the two largest meteorite deflation surfaces in Roosevelt County, New Mexico, USA, using thermoluminescence dating techniques. The dates obtained ranged from 53.5 (±5.4) to 95.2 (±9.5) ka, and must be considered lower limits for the terrestrial ages of the meteorites found within these specific deflation surfaces. These ages greatly exceed previous measurements from adjacent meteorite-producing deflation basins. We find that Roosevelt County meteorites are probably terrestrial contemporaries of the meteorites found at most accumulation zones in Antarctica. The apparent high meteorite accumulation rate reported for Roosevelt County by Zolensky et al. (1990) is incorrect, as it used an age of 16 ka for all Roosevelt County recovery surfaces. We conclude that the extreme variability of terrestrial ages of the Roosevelt County deflation surfaces effectively precludes their use for calculations of the meteorite accumulation rate at the Earth's surface.  相似文献   

20.
The gamma‐ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani‐Swiss meteorite search campaigns 2001–2008 were nondestructively measured using an ultralow background gamma‐ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0‐1 and low 14C terrestrial age and (2) weathering degree W3‐4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is ~120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass ~4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of ~115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma‐ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号