首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the late 1980s, dramatic increases in water use caused over‐exploitation of groundwater resources and deterioration of water quality in Seoul metropolitan city. To monitor changes in quantity of groundwater resources and their quality, the metropolitan government established a local groundwater monitoring network in 1997 consisting of 119 monitoring wells. Groundwater resources in the urban area were affected by various human activities, including underground construction such as subways, pumping for public or private water use, leaky sewer systems and pavements. The variation patterns of the groundwater levels were mainly classified into four types, reflecting natural recharge due to rainfall events during the wet season, artificial recharge from leaky sewer or water supply systems, and heavy groundwater pumping for drainage or flood control purposes at underground construction sites. Significantly decreasing trends of groundwater levels in the suburbs of Seoul indicate groundwater use for various agricultural activities. Subway construction lowered the water level by an average of 25 m. Electrical conductivity values showed a wide range, from 100 to 1800 µS/cm (mean 470 µS/cm). Groundwater temperature generally showed a stable pattern, except for some sensitive increases at relatively shallow monitoring wells. Detailed analysis of the monitored groundwater data would provide some helpful implications for optimal and efficient management of groundwater resources in this metropolitan city. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Laterite soils are widespread in tropical Africa and have a large impact on the hydrology of the areas they cover. The permeability of laterite helps determine the partitioning of runoff and interflow and regulates groundwater recharge to underlying bedrock. Groundwater within laterite also forms a widespread source of drinking water, typically from unimproved hang‐dug‐wells. Despite its importance, there is little published information on laterite aquifer properties. In this study, data from a 6 m deep well in Nigeria have been analysed to characterise the hydraulic conductivity of the laterite from repeated pumping tests. Transmissivity measurements from 40 tests spread out across a hydrological year varied from 0.1 to 1000 m2/d. Further interpretation of the data demonstrate a strong non‐linear decrease in horizontal hydraulic conductivity with depth, characterised by an upper horizon of extreme permeability (400 m/d), and a much lower permeability profile beneath (<0.1 m/d). These data are substantiated with observations from other wells throughout the area. This non‐linear permeability structure has several implications: the upper laterite can facilitate rapid lateral throughflow in the wet season, enabling contaminants to be transported significant distances (up to 1 km); natural groundwater levels are restricted to a narrow range for much of the year; and, in the dry season, the lower permeability of the deeper laterite restricts the amount of water which can be abstracted from shallow wells, leading to well failure. The work highlights the need for a wider study to better understand laterite soils and the role they play in regional hydrology. © 2013 Natural Environment Research Council. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

3.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.  相似文献   

5.
Following passage of the New Jersey Private Well Testing Act, 50,800 domestic wells were tested between 2002 and 2007 for the presence of total coliform (TC) bacteria. Wells containing TC bacteria were further tested for either fecal coliform or Escherichia coli (FC/E. coli) bacteria. Analysis of the data, generated by 39 laboratories, revealed that the rate of coliform detections in groundwater (GW) was influenced by the laboratory and the method used, and also by geology. Based on one sample per well, TC and FC/E. coli were detected in wells located in bedrock 3 and 3.7 times more frequently, respectively, than in wells located in the unconsolidated strata of the Coastal Plain. In bedrock, detection rates were higher in sedimentary rock than in igneous or metamorphic rock. Ice‐age glaciers also influenced detection rates, most likely by removing material in some areas and depositing thick layers of unconsolidated material in other areas. In bedrock, coliform bacteria were detected more often in wells with a pH of 3 to 6 than in wells with a pH of 7 to 10 whereas the reverse was true in the Coastal Plain. TC and FC/E. coli bacteria were detected in 33 and 9.5%, respectively, of sedimentary rock wells with pH 3 to 6. Conversely, for Coastal Plain wells with pH 3 to 6, detection rates were 4.4% for TC and 0.6% for FC/E. coli.  相似文献   

6.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

7.
The goal of this study was to test hollow‐fiber ultrafiltration as a method for concentrating in situ bacteria and viruses in groundwater samples. Water samples from nine wells tapping a shallow sandy aquifer in a densely populated village in Bangladesh were reduced in volume approximately 400‐fold using ultrafiltration. Culture‐based assays for total coliforms and Escherichia coli, as well as molecular‐based assays for E. coli, Bacteroides, and adenovirus, were used as microbial markers before and after ultrafiltration to evaluate performance. Ultrafiltration increased the concentration of the microbial markers in 99% of cases. However, concentration factors (CF = post‐filtration concentration/pre‐filtration concentration) for each marker calculated from geometric means ranged from 52 to 1018 compared to the expected value of 400. The efficiency was difficult to quantify because concentrations of some of the markers, especially E. coli and total coliforms, in the well water (WW) collected before ultrafiltration varied by several orders of magnitude during the period of sampling. The potential influence of colloidal iron oxide precipitates in the groundwater was tested by adding EDTA to the pre‐filtration water in half of the samples to prevent the formation of precipitates. The use of EDTA had no significant effect on the measurement of culturable or molecular markers across the 0.5 to 10 mg/L range of dissolved Fe2+ concentrations observed in the groundwater, indicating that colloidal iron did not hinder or enhance recovery or detection of the microbial markers. Ultrafiltration appears to be effective for concentrating microorganisms in environmental water samples, but additional research is needed to quantify losses during filtration.  相似文献   

8.
Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

9.
A combination of micro-meteorological, soil physical and groundwater chemical methods enabled the water balance of a tropical eucalypt savanna ecosystem in Northern Australia to be estimated. Heat pulse and eddy correlation were used to determine overstory and total evapotranspiration, respectively. Measurements of soil water content, matric suction and water table variations were used to determine changes in soil moisture storage throughout the year. Groundwater dating with chlorofluorocarbons was used to estimate net groundwater recharge rates, and stream gauging was used to determine surface runoff. The wet season rainfall of 1585 mm is distributed as: evapotranspiration 810 mm, surface runoff (and shallow subsurface flow) into the river 410 mm, groundwater recharge 200 mm and increase in soil store 165 mm. Of the groundwater recharge, 160 mm enters the stream as baseflow in the wet season, 20 mm enters as baseflow in the dry season, and the balance (20 mm) is distributed to and used by minor vegetation types within the catchment or discharges to the sea. In the dry season, an evapotranspiration of 300 mm comprises 135 mm rainfall and 165 mm from the soil store. Because of the inherent errors of the different techniques, the water balance surplus (estimated at 20 mm) cannot be clearly distinguished from zero. It may also be as much as 140 mm. To our knowledge, this is the first time that such diverse methods have been combined to estimate all components of a catchment's water balance.  相似文献   

10.
As a crucial agricultural and economic development zone since the Qin Dynasty (221 to 206 BC), the Guanzhong section of the Weihe River basin is facing serious water resource shortages due to population growth and regional development. Its water resource amount per capita is only 361 m3, about 1/6 of the average in China and less than 1/20 of the average in the world. Surface water and groundwater (SW-GW) interaction, having a significant influence on the spatiotemporal distribution of water resources, was qualitatively and quantitatively investigated during a wet year based on stable isotopes and hydrochemistry. The results show that the recharge pattern in the north part varies with season, that is, 40% of the surface water recharge comes from groundwater in the dry season, but 93% of the groundwater recharge comes from surface water in the rainy season. In the south part, groundwater is always recharged by surface water, with contributions of 47% and 61% in the rainy and dry seasons, respectively. For the main stream, the recharge pattern is complicated and varies with season and site. This study will provide useful information about SW-GW interaction at basin scale. Integrated management of groundwater and surface water could improve the efficiency of regional water resources utilization and promote accurate and sustainable water management in the semi-arid basin.  相似文献   

11.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

12.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

13.
The groundwater in shallow loess aquifers in high mountain–hills in the western Loess Plateau in China is almost the sole water resource for local residents. However, the question about how the loess groundwater naturally circulates in these high mountain–hills, characterized by low precipitation and high potential evaporation, remains unclear. The objectives of this study are to evaluate the application of hydrogen and oxygen isotopes to (1) examine temporal variations of the isotopic composition of precipitation and shallow groundwater and (2) uncover the mechanism of groundwater recharge in high mountain–hills. Results from 2 years of monitoring data show a difference in the stable isotopes for groundwater and local precipitation between the winter and summer periods. Similar to precipitation, stable isotopes in groundwater are observed to be depleted in winter and enriched in summer, particularly in oxygen isotope. A prominent characteristic is that H and O isotopes of groundwater show a very clear response to strong precipitation in the rainy season in 2013. The results highlight that local precipitation is the likely recharge source for groundwater in shallow loess aquifers. Annual recharge from local precipitation maintains the groundwater resource in the shallower loess aquifer. The mechanisms governing shallow loess groundwater recharge in high mountain–hills were evaluated. In addition to possible vertical slow percolation of soil water through the unsaturated zone, rapid groundwater recharge mechanisms have been identified as temporal preferential infiltration through sinkholes, slip surface or landslide surface and through the interface of loess layer and palaeo‐soils. Most groundwater can be recharged after a heavy rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Agricultural water management (AWM) is the adaptation strategy for increasing agricultural production through enhancing water resources availability while maintaining ecosystem services. This study characterizes groundwater hydrology in the Kothapally agricultural watershed, in hard rock Deccan plateau area in India and assesses the impact of AWM interventions on groundwater recharge using a calibrated and validated hydrological model, SWAT, in combination with observed water table data in 62 geo‐referenced open wells. Kothapally receives, on average, 750 mm rainfall (nearly 90% of annual rainfall) during the monsoon season (June to October). Water balance showed that 72% of total rainfall was converted as evapotranspiration (ET), 16% was stored in aquifer, and 8% exported as runoff from the watershed boundary with AWM interventions. Nearly 60% of the runoff harvested by AWM interventions recharged shallow aquifers and rest of the 40% increased ET. Water harvesting structures (WHS) contributed 2.5 m additional head in open wells, whereas hydraulic head under natural condition was 3.5 m, resulting in total 6 m rise in water table during the monsoon. At the field scale, WHSs recharged open wells at a 200 to 400 m spatial scale.  相似文献   

15.
The project captured a subset of the hydrological cycle for the tropical island of O'ahu, linking precipitation to groundwater recharge and aquifer storage. We determined seasonal storm events contributed more to aquifer recharge than year-round baseline orographic trade wind rainfall. Hydrogen and oxygen isotope values from an island-wide rain collector network with 20 locations deployed for 16 months and sampled at 3-month intervals were used to create the first local meteoric water line for O'ahu. Isotopic measurements were influenced by the amount effect, seasonality, storm type, and La Niña, though little elevation control was noted. Certain groundwater compositions from legacy data showed a strong similarity with collected precipitation from our stations. The majority of these significant relationships were between wet season precipitation and groundwater. A high number of moderate and heavy rainfall days during the dry season, large percentage of event-based rainfall, and wind directions outside of the typical NE trade wind direction were characteristics of the 2017–2018 wet season. This indicates that the majority of wet season precipitation is from event-based storms rather than typical trade wind weather. The deuterium-excess values provided the strongest evidence of a relationship between groundwater and different precipitation sources, indicating that this may be a useful metric for determining the extent of recharge from different rain events and systems.  相似文献   

16.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

17.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

19.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

20.
One of the mainstays of mitigation to reduce the exposure of the rural population of Bangladesh to arsenic (As) from private, mostly <90‐m deep wells over the past 15 years has been the installation of over 300,000 deeper community wells. A comprehensive testing campaign previously conducted across a 180 km2 of area of Bangladesh identified 9 out of total of 927 wells >90 m deep that contained >50 µg/L arsenic. We show here that for five of these nine wells, conductivity profiles obtained after spiking the well bore with salt indicate a shallow leak that could explain the high As in the well water. In two of the five leaky wells, the presence of additional screens at the depth of the leak was documented with a downhole camera. The downhole camera did not detect anomalies in the construction of the remaining three leaky wells or in the four wells that did not leak. The four wells that did not leak were all >150‐m deep and located in two villages separated by less than 500 m. Excluding these two villages and a handful of leaky wells, the results indicate an aquifer that is consistently low in As over a sizeable area at depths >90 m. Isolated cases of public wells that are elevated in As that have been reported elsewhere in Bangladesh may therefore reflect improper installation rather than actual contamination of the deep aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号