首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Earth's gravity field can be determined from gravity measurements made on the surface of the Earth, and through the analysis of the motion of Earth satellites. Gravity data can be used to solve the boundary value problem of gravimetric geodesy in various ways, from the classical formulation using a geoid to the concept of a reference surface interior to the masses of the Earth to a statistical method. We now have gravity information for 10 data blocks over 46% of the Earth's surface and more than several million point measurements available.Satellite observations such as range, range-rate, and optical data have been analyzed to determine potential coefficients used to describe the Earth's gravitational potential field. Coefficients, in a spherical harmonic expansion to degree 12, can be determined from satellite data alone, and to at least degree 20 when the satellite data is combined with surface gravity material. Recent solutions for potential coefficients agree well to degree 4, but with increasing disagreement at higher degrees.  相似文献   

2.
Summary The potential energy of the Earth—Moon system is derived and, thus, also the disturbing potential function, responsible for the lunar precession of the Earth's axis, with preserving the terms from the non-spherical disturbing body. The gravitational fields of the Earth and Moon are considered in the form of a development in terms of spherical harmonics upto n=4.  相似文献   

3.
Summary The tidal potential is derived at a point on the Earth's surface for the case when the perturbing gravitational field is not spherically symmetrical.  相似文献   

4.
A recently proposed method for the computation of the gravitational effect due to the topographic masses defined by a Digital Elevation Model (DEM) involves the representation of the surface relief by means of parts of bilinear surfaces. The so-called bilinear method delivers eventually the mathematical model for the gravitational attraction of a right rectangular prism, whose top is modeled by a bilinear surface. Scope of the paper is to assess the new method by conducting numerical tests using both real and synthetic data. The performance of the bilinear method is evaluated in terms of its computational efficiency as well as its precision by comparing it with other analytical methods available for the practical evaluation of gravitational terrain effects. The techniques considered for the assessment of the bilinear approximation are the vastly applied right rectangular prism method and the polyhedral modeling, a less popular but extremely flexible approach based on the closed expression for the gravity field of an arbitrarily shaped mass distribution defined by planar faces. The different geometric modeling of the topographic relief produces discrepancies to the gravitational attraction of up to several mGal. Thus the choice for the geometric representation of the terrain plays a fundamental role to the numerical computation of potential field quantities especially in the critical region surrounding the computation point.  相似文献   

5.
Discussion of Mean Gravity Along the Plumbline   总被引:2,自引:1,他引:1  
According to the definition of the orthometric height, the mean value of gravity along the plumbline between the Earth's surface and the geoid is defined in an integral sense. In Helmert's (1890) definition of the orthometric height, a linear change of the gravity with depth is assumed. The mean gravity is determined so that the observed gravity at the Earth's surface is reduced to the approximate mid-point of the plumbline using Poincaré-Prey's gravity gradient. Niethammer (1932) and later Mader (1954) took into account the mean value of the gravimetric terrain correction within the topography considering the constant topographical density distribution along the plumbline (for more details see Heiskanen and Moritz, 1967). Vaníek et al. (1995) included the effect of the lateral variation of the topographical density into the definition of Helmert's orthometric height. Recently, Hwang and Hsiao (2003) discussed the influence of the vertical gradient of disturbing gravity on the orthometric heights. In this paper, the mean integral value of gravity along the plumbline within the topography is defined so that the actual topographical density distribution and the change of the disturbing gravity with depth are taken into account. Based on the definition of the mean gravity, the relation between the orthometric and normal heights is discussed.  相似文献   

6.
第一,基于扰动星间距离观测量对地球重力场反演精度的敏感性优于星间距离观测值的特性,本文构建了新型扰动星间距离法(DIRM).第二,有效检验了下一代HIP-3S编队的轨道稳定性,结果表明:HIP-3S编队较稳定,有利于提高地球重力场反演精度.第三,基于扰动星间距离法,分别利用当前GRACE-2S串行式双星编队和下一代HIP-3S复合式三星编队精确反演了120阶地球重力场,在120阶处累计大地水准面精度为2.271×10~(-1)m和1.923×10~(-3)m,结果表明:HIP-3S复合式三星编队有利于建立下一代高精度和高空间分辨率的地球重力场模型.  相似文献   

7.
基于球面边值问题的点质量调和分析方法   总被引:1,自引:1,他引:0       下载免费PDF全文
吴星  张传定  赵东明 《地球物理学报》2009,52(12):2993-3000
对全球扰动点质量模型而言,可以假定虚拟扰动质点系位于地球内部同一Bjerhamar球面上,同时把边值界面视为球面.本文针对这一假设下所形成的线性方程组的系数阵,运用快速傅里叶变换的方法,得到了点质量模型解算中利用分块循环矩阵分解大型线性方程组的新方法.全球30′×30′扰动点质量模型259200阶方程组的解算分解为720个360阶方程组的解算,解决了点质量模型构建中大型线性方程组的稳定解算问题.推导了全球点质量模型与球谐位系数模型的转换关系,得到了一种基于球面边值问题的点质量调和分析方法.数值模拟试验表明,在适当选取点质量埋深度的情况下,本文的点质量调和分析方法较传统的调和分析方法精度更高.  相似文献   

8.
The compilation of new global Mohorovii (Moho) topographic data enables the density contrast between the crust and mantle to be estimated. Assuming that this contrast is constant, the minimization of the external gravitational potential induced by the Earth's topographic masses and the Moho discontinuity yields the value of 0.28 g/cm3 for the density jump at the Moho. Moreover, it is shown that the Airy Heiskanen model of compensation only partly compensates the surface topographic masses. To fit the external gravitational potential, induced by the surface topography, the Pratt-Hayford concept of compensation has to be considered. Employing the dynamical flattening of the Earth, the minimum depth of compensation has been estimated at 100–150 km. This means that the topographic masses are compensated throughout the Earth's lithosphere at least.  相似文献   

9.
Summary In the present paper the gravity field of the earth in the neighbourhood of the local disturbing masses is studied. The object of the method presented consists of the approximation of the disturbing potentialT h , which fulfils Laplace's equation outside disturbing masses, on the earth's surface the fundamental boundary value condition of gravity and in infinity it is to be regular by the approximation of the disturbing potential (or by the discrete disturbing potential)T h , which fulfils the respective finite difference approximation of Laplace's equation and the boundary value conditions in infinity and on the earth's surface. It is also shown that the approximation of the disturbing potentialT h has the same properties as the disturbing potentialT. The method under consideration will be derived quite generally without any hypothesis about the distribution of the mass between the earth's surface and the geoid. It commences from the gravity data related to the earth's surface only-from the given geodetic measurements.  相似文献   

10.
The Legendre functions of the second kind, renormalized by Jekeli, are considered in the external space on a set of ellipsoids of revolution which are confocal with respect to the normal ellipsoid. Among these ellipsoids a reference one is chosen which bounds the Earth. New expressions for the first and second order derivatives of the Legendre functions are derived. They depend on two very quickly convergent Gauss hypergeometric series which are obtained by transforming the slowly convergent initial hypergeometric series. The derived expressions are applied for constructing the ellipsoidal harmonic series for the Earth disturbing gravitational potential and its derivatives of the first and second orders. Since outside the chosen reference ellipsoid there are no Earth masses (as compared to the normal ellipsoid) then it is more appropriate for constructing the boundary-value equation and solving it on the basis of surface gravity data reduced to this ellipsoid.  相似文献   

11.
The approach, fundamentally different from the known ones, to estimating the spatial location of the domain filled with the disturbing masses based on the gravity field measurement data is suggested. The main idea of the approach is, using the set of the probable variants of the interpretation, to construct the distribution of a certain parameter associated with the estimate of probability of detecting the sources of the field in any point of the studied geological medium and then to apply this distribution to each domain eligible for being the true carrier of the anomalous masses. These constructions yield the generalized admissible solutions of the inverse problem with ranking the separate fragments of the model carrier in terms of the probability of detecting anomalous masses in them.  相似文献   

12.
重力卫星可以在相同误差尺度下对全球质量变化进行连续重复观测,并在近十余年来取得了巨大成功,探索重力卫星数据精化处理方法和相关应用研究具有重要意义.本文基于三维加速度点质量模型法的基本原理,进一步发展建立了时变重力场模型球谐位系数的变化和地面点质量变化的关系,可有效考虑地表质量变化导致的负荷形变的影响;引入等权形式、线性形式、指数形式和高斯形式的空间约束方法处理南北条带噪声和向下延拓导致的病态问题,并与零阶Tikhonov正则化方法进行对比分析.采用模拟数据和一个月的实测GRACE时变重力场模型计算全球质量变化,对三维加速度点质量模型法和几种空间约束方法进行对比分析验证.计算结果表明,对于3°等面积的全球格网质量点,高斯和指数形式空间约束方法的最优相关距离约为500km,等权和线性形式空间约束方法的最优相关距离约为600km,各方法均可有效处理条带噪声的影响,四种空间约束方法的计算效果优于零阶Tikhonov正则化方法,本文的相关方法为进一步利用三维加速度点质量模型法监测全球质量变化提供了借鉴.  相似文献   

13.
根据卫-卫跟踪观测技术的测量原理,基于能量守恒法建立了一种新的双星相互跟踪和三星相互跟踪的卫星观测方程. 通过数值模拟,采用预处理共轭梯度法恢复120阶地球重力场. 模拟结果表明:第一,双星相互跟踪恢复地球重力场的精度和美国喷气动力实验室公布的EIGEN GRACE02S的结果相符合;第二,三星相互跟踪恢复地球重力场的精度较双星提高约2倍.  相似文献   

14.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场. 第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程. 第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数. 如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加. 因此,6点RIRM公式是提高下一代地球重力场精度的较优选择. 第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性. 随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高. 第四,基于6点RIRM公式,通过30天观测数据和采样间隔5 s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m. 研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE Follow-On地球重力场精度较GRACE至少高10倍.  相似文献   

15.
外部扰动重力场的频谱响应质点模型   总被引:3,自引:2,他引:3       下载免费PDF全文
本文提出一种新的虚拟质点建模方式,旨在实现地球外部重力场的快速精密赋值.其基本思想在于:根据内部场源与外部场的频谱响应关系,视质点系为若干子系组成,让其中每个子系具有与外部场的相应频段分量响应的谱频特性.质点系的频谱响应性质将会大大削弱通常质点模型产生的所谓且Runge现象:泄漏与增频,从而显著提高逼近精度.文中还详细讨论了频谱响应质点模型的原理和构制方法,并对模型精度进行了分析和估算.  相似文献   

16.
17.
SNREI地球对表面负荷和引潮力的形变响应   总被引:5,自引:2,他引:5       下载免费PDF全文
基于PREM模型,利用非自转、球型分层、各向同性、理想弹性(SNREI)地球的形变理论,讨论了地球在不同驱动力作用下的形变特征.采用地球位移场方程的4阶Runge Kutta数值积分方法,解算了在表面负荷和日月引潮力作用下地球表面和内部形变和扰动位,并给出了地球表面的负荷Love数和体潮Love数.结果表明在固体内核中的形变很小,液核中低阶(n<10)负荷位移随半径的变化非常复杂.当负荷阶数超过10时,地核中的形变和扰动位都很小,地球的响应主要表现为弹性地幔中的径向位移,且随深度增加急剧减弱,负荷阶数越高这种衰减的速度越快.SNREI地球的地表负荷Love数和体潮Love数与信号频率的依赖关系很弱.在计算体潮Love数的过程中,采用了SNREI地球的运动方程,同时考虑了由于地球自转和椭率引起的核幔边界附加压力,这一近似处理方法获得的结果能很好地符合地球表面重力潮汐实际观测结果.  相似文献   

18.
为了研究卫星重力梯度技术对中高频地球重力场反演精度的影响,本文基于时空域混合法,利用Kaula正则化反演了250阶GOCE地球重力场.模拟结果表明:第一,时空域混合法是精确和快速求解高阶地球重力场的有效方法;第二,Kaula正则化是降低正规阵病态性的重要方法;第三,基于改进的预处理共轭梯度迭代法可快速求解大型线性方程组...  相似文献   

19.
卫星重力反演的短弧长积分法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
游为  范东明  黄强 《地球物理学报》2011,54(11):2745-2752
给出了统一求解球谐位系数、弧段边界轨道改正向量、有偏距离改正及加速度计偏差的短弧长积分法,通过对力模型梯度改正减弱了轨道误差对反演地球重力场的影响.采用GRACE卫星1个月的实测轨道及星间距离数据计算表明,短弧长积分法加了梯度改正的精度比不加梯度改正整体提高了近一倍,且该方法在高阶次位系数的精度优于动力学法.基于GRA...  相似文献   

20.
The redistribution of air masses induces gravity variations (atmospheric pressure effect) up to about 20 μgal. These variations are disturbing signals in gravity records and they must be removed very carefully for detecting weak gravity signals. In the past, different methods have been developed for modelling of the atmospheric pressure effect. These methods use local or two-dimensional (2D) surface atmospheric pressure data and a standard height-dependent air density distribution. The atmospheric pressure effect is consisting of the elastic deformation and attraction term. The deformation term can be well modelled with 2D surface atmospheric pressure data, for instance with the Green's function method. For modelling of the attraction term, three-dimensional (3D) data are required. Results with 2D data are insufficient.From European Centre for Medium-Range Weather Forecasts (ECMWF) 3D atmospheric pressure data are now available. The ECMWF data used here are characterised by a spacing of Δ and Δλ = 0.5°, 60 pressure levels up to a height of 60 km and an interval of 6 h. These data are used for modelling of the atmospheric attraction term. Two attraction models have been developed based on the point mass attraction of air segments and the gravity potential of the air masses. The modelling shows a surface pressure-independent part of gravity variations induced by mass redistribution of the atmosphere in the order of some μgal. This part can only be determined by using 3D atmospheric pressure data. It has been calculated for the Vienna Superconducting Gravimeter site.From this follows that the gravity reduction can be improved by applying the 3D atmospheric attraction model for analysing long-periodic tidal waves including the polar tide. The same improvement is expected for reduction of long-term absolute gravity measurements or comparison of gravity measurements at different seasonal times. By using 3D atmospheric pressure data, the gravity correction can be improved up to some μgal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号