共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineralogical and geochemical studies have been undertaken on the Triassic to Lower Jurassic Adigrat Sandstone of the Blue Nile Basin of central Ethiopia to infer its source rock type, paleoweathering, and paleoclimatic history. The Adigrat Sandstone occurs at the basal section of the Mesozoic sedimentary formation and unconformably overlays the Neoproterozoic–Paleozoic crystalline rocks, or locally, the Karroo sediments in the northern Blue Nile Basin. A mineralogical study reveals that quartz (Q), feldspars (F), and lithic fragments (L) are the framework grains of the sandstone. On the QFL diagram, the plot of the modal composition of the sandstone mainly falls within the feldspathic arenite and quartzose arenite fields. The geochemical data of the lower section of the sandstone mainly falls within the arkose and subarkose fields, whereas the upper section data falls within the quartzose and sublithic arenite fields. Mineralogical and geochemical weathering indices indicate that the provenances of the Adigrat Sandstone were exposed to pronounced weathering intensity, where the lower part of the sandstone was controlled by arid to semi-arid conditions, whereas the upper section was linked to humid to semi-humid (tropical to subtropical) climatic conditions. Mineralogical and geochemical data also indicate that mafic to intermediate basement rocks were the primary source rocks of the sediment. Perhaps the sediment was assumed to have been reworked by multi-cyclic sedimentary processes. The discriminant function diagram, the REE pattern, La/Th vs. La/Yb, and the Th–Hf–Co plot are consistent. A comparison of provenance studies for the Adigrat Sandstone in the Blue Nile Basin and the Mekele outlier of northern Ethiopia indicates that the sediment of the former is highly sorted, experienced higher weathering intensity, and compositionally derived from mafic to intermediate crystalline rocks. On the other hand, the sediment of the latter is essentially a weathering product of felsic rocks. 相似文献
2.
Groundwater has been the main source of water supply for large cities and towns over the last few decades in the upper Blue
Nile River Basin, Ethiopia. However, provision is often unsuccessful because of poor well productivity, difficult drilling
conditions, poor well positioning, or sometimes due to poor water quality. The growing pressure of urban population and industrial
development is focusing unprecedented attention on the groundwater potential of the basin. The purpose of this work is to
spatially characterize the groundwater potential of the upper Blue Nile River Basin with respect to variable recharge and
geodiversity. The study shows that from the annual recharge obtained using the base flow separation method, the renewable
groundwater potential in the basin was estimated to be in the range of 1.2 and 2 billion m 3/year. The aquifers in the area are divided into three categories: low to moderate productivity (≈3.5 l/s) which includes
crystalline basement rocks, acidic lava flows and domes, and very fine alluvial sediments; moderate to high productivity (≈5.5 l/s)
that includes Mesozoic sedimentary rocks (sandstone, limestone, gypsum, dolomite); and high to very high productivity (≈20 l/s)
which includes basic lava flows of the Trap series, Quaternary lava flows and alluvial sediments. 相似文献
3.
Exploration of oil and gas deposits in the Blue Nile Basin targeted the Debre Libanose Sandstone as a reservoir objective. The unit was deposited in broad alluvial plains, and shows some elements of the Platte type braided river sedimentation in the lower and middle succession. The braided river sedimentation is dominated by single storey and multistorey amalgamated sandstone bodies, and is characterized by high- and low-flow regime sedimentation.The upper part of the unit is characterized by well-developed cyclicity, fining-upward trend, lateral accretion surfaces, flood-plain sediments, point bar deposits, and calcrete are consistent with of meandering river sedimentation. The siltstones, mudstones, and shales were developed from suspension-dominated waning flood water. The presence of black mudstones and black shales in the uppermost part of the unit possibly indicate lacustrine environments.The unit has a complex diagenetic history and is cemented dominantly by silica, calcite, kaolinite, and hematite. The maximum porosity and permeability reaches up to 22.2% and 809 mD, respectively. The fine- to medium-grained sandstones are potential oil and gas reservoirs. The low-permeability siltstones and mudstones are possible gas reservoirs. 相似文献
4.
Landslide susceptibility consists of an essential component in the day-to-day activity of human beings. Landslide incidents are typically happening at a low rate of recurrence when compared and in contrast to other events. This might be generated into main natural catastrophes relating to widespread and undesirable sound effects. Landslide hotspot area identification and mapping are used for the regional community to secure from this disaster. Therefore, this research aims to identify the hotspot areas of landslide and to generate maps using GIS, AHP, and multi-criteria decision analysis (MCDA). MCDA techniques are applied under such circumstances to categorize and class decisions for successive comprehensive estimation or else to state possible from impossible potentiality with various landslides. Analytical hierarchy process (AHP) constructively applies for conveying influence to different criteria within multi-criteria decision analysis. The causative landslide identifying factors utilized in this research were elevation, slope, aspect, soil type, lithology, distance to stream, land use/land cover, rainfall, and drainage density achieved from various sources. Subsequently, to explain the significance of each constraint into landslide susceptibility, all factors were found using the AHP technique. Generally, landslide susceptibility map factors were multiplied by their weights to acquire with the AHP technique. The result showed that the AHP methods are comparatively good quality estimators of landslide susceptibility identification in the Chemoga watershed. As the result, the Chemoga watershed landslide susceptibility map classes were classified as 46.52%, 13.83%.18.71%, 15.39%, and 5.55% of the occurred landslide fall to very low, low, moderate, high, and very high susceptibility zones, respectively. Performance and accuracy of modeled maps have been established using GPS field data and Google earth data landslide map and area under curve (AUC) of the receiver operating characteristic curve (ROC). As the result, validation depends on the ROC specifies the accuracy of the map formed with the AHP merged through weighted overly method illustrated very good accuracy of AUC value 81.45%. In general, the research outcomes inveterate the very good test consistency of the generated maps. 相似文献
5.
Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na–HCO3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca–Mg–HCO3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 °C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ18O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ18O groundwaters. Altitudinal depletion of δ18O is 0.1‰/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude. 相似文献
6.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
Hydrogeochemical and isotopic signatures of the waters of the Baro-Akobo River Basin show deviation from signatures in other Ethiopian river basins. In this study, hydrogeochemical and isotope methods were employed to determine regional and local hydrogeology and characteristics of the basin. Optical, thermal and radar remote sensing products were used to update geological and structural maps of the basin and determine sampling points using the judgment sampling method. A total of 363 samples from wells, springs, rivers, lakes, swamps and rain were collected for this study, and an additional 270 water quality data sets were added from previous studies. These data were analyzed for their hydrogeochemical characteristics and isotope signatures. Analysis of the oxygen, deuterium and tritium isotopes shows the groundwater of the basin is modern water. Among all basins in Ethiopia, the Baro-Akobo Basin shows the highest enrichment. This indicates the proximity of the rainfall sources, which presumably are the Sudd and other wetlands in South Sudan. The hydrochemical properties of the waters show evapotranspiration is the dominant hydrologic process in the basin and explains the large amount of water that is lost in the lowland plain. Analysis of radon-222 shows no significant groundwater flux over the wetlands, which are part of Machar Marshes. This shows evaporation to be dominant hydrologic process in this zone. Results from all analyses help explain the limited holding capacity of the aquifers in the recharge zone and their vulnerability to anthropogenic impacts and climate variability. There is a trend of decreasing surface flow and rainfall and increasing water soil erosion. 相似文献
10.
The geotechnical characteristics of Ulleung Basin sediments are explored using depressurized samples obtained at 2100 m water depth and 110 m below the sea floor. Geotechnical index tests, X-ray diffraction, and SEM images were obtained to identify the governing sediment parameters, chemical composition and mineralogy. We use an instrumented multi-sensor oedometer cell to determine the small-strain stiffness, zero-lateral strain compressibility and electromagnetic properties, and a triaxial device to measure shear strength. SEM images show a sediment structure dominated by microfossils, with some clay minerals that include kaolinite, illite, and chlorite. The preponderant presence of microfossils determines the high porosity of these sediments, defines their microstructure, and governs all macroscale properties. The shear wave velocity increases as the vertical effective stress increases; on the other hand, porosity, permittivity, electrical conductivity, and hydraulic conductivity decrease with increasing confinement. All these parameters exhibit a bi-linear response with effective vertical stress due to the crushable nature of microfossils. Well-established empirical correlations used to evaluate engineering parameters do not apply for these diatomaceous sediments which exhibit higher compressibility than anticipated based on correlations with index properties. Settlements will be particularly important if gas production is attempted using depressurization because this approach will cause both hydrate dissociation and increase in effective stress. 相似文献
11.
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events. 相似文献
12.
The distribution of hominin fossil sites in the Turkana Basin, Kenya is intimately linked to the history of the Omo River, which affected the paleogeography and ecology of the basin since the dawn of the Pliocene. We report new geological data concerning the outlet channel of the Omo River between earliest Pliocene and final closure of the Turkana Basin drainage system in the latest Pliocene to earliest Quaternary. Throughout most of the Pliocene the Omo River entered the Turkana Basin from its source in the highlands of Ethiopia and exited the eastern margin of the basin to discharge into the Lamu embayment along the coast of the Indian Ocean. During the earliest Pliocene the river’s outlet was located in the northern part of the basin, where a remnant outlet channel is preserved in basalts that pre-date eruption of the Gombe flood basalt between 4.05 and 3.95 Ma. The outlet channel was faulted down to the west prior to 4.05 Ma, forming a natural dam behind which Lake Lonyumun developed. Lake Lonyumun was drained between 3.95 and 3.9 Ma when a new outlet channel formed north of Loiyangalani in the southeastern margin of the Turkana Basin. That outlet was blocked by Lenderit Basalt lava flows between 2.2 and 2.0 Ma. Faulting that initiated either during or shortly after eruption of the Lenderit Basalt closed the depression that is occupied by modern Lake Turkana to sediment and water.Several large shield volcanoes formed east of the Turkana Basin beginning by 2.5–3.0 Ma, volcanism overlapping in time, but probably migrating eastward from Mount Kulal on the eastern edge of the basin to Mount Marsabit located at the eastern edge of the Chalbi Desert. The mass of the volcanic rocks loaded and depressed the lithosphere, enhancing subsidence in a shallow southeast trending depression that overlay the Cretaceous and Paleogene (?) Anza Rift. Subsidence in this flexural depression guided the course of the Omo River towards the Indian Ocean, and also localized accumulations of lava along the margins of the shield volcanoes. Lava flows at Mount Marsabit extended across the Omo River Valley after 1.8–2.0 Ma based on estimated ages of fossils in lacustrine and terrestrial deposits, and possibly by as early as 2.5 ± 0.3 Ma based on dating of a lava flow. During the enhanced precipitation in latest Pleistocene and earliest Holocene (11–9.5 ka) this flexural depression became the site of Lake Chalbi, which was separated from Lake Turkana by a tectonically controlled drainage divide. 相似文献
13.
This paper describes the results of an experimental, as well as theoretical, analysis of a landslide in a clay slope at the
margin of a small town of Southern Italy, whose reactivation of 1998 caused severe damages to some structures. To protect
the upslope urban area, an anchored diaphragm wall and a drainage system were constructed in 2001. In the meantime, in order
to understand the processes which caused the reactivation, a Department of the Basilicata Administrative Region provided financial
support to a geotechnical investigation. Laboratory tests on undisturbed and reconstituted specimens, in situ pore pressure
and deep displacement measurements were carried out. Both experimental and theoretical in situ water content (and porosity)
profiles were determined. Theoretical analyses of pore pressure distribution and stability analyses were carried out. The
influence of the drainage system on the slope safety factor was evaluated. Experimental and theoretical data suggest that
a first time process occurred in the lower part of the landslide system. The upper part moved on pre-existing surfaces on
which an average shear strength close to the residual strength was available. Noticeable water content increase was found
around some of these surfaces. Erosion at the toe of the landslide was the probable cause of reactivation. The analysis of
the drain system effectiveness suggests that drainage has not significantly influenced pore pressures on the considered slip
surfaces yet, mainly because of the very low permeability of the clay. 相似文献
14.
The orogeny of the Scandinavian and Greenland Caledonides is shortly reviewed, and a structural sketch map of the Scandinavian Caledonide part of the Geotraverse is presented. Post-Caledonian rifting episodes prior to the formation of the North Atlantic Ocean are briefly discussed, as well as the opening of the northern North Atlantic Ocean and its spreading rates.Computations of density models carried out on the basis of the Simplex-Algorithm which allows a least-squares solution under certain constraints show clearly a Moho-depression beneath the Caledonides and a comparatively thick oceanic crust in the Norwegian Sea. The transition zone oceanic continental crust has a complex structure, but a continuation of the Lofoten Islands and a part of the Vøring Plateau escarpment can be detected.The residuals of former measurements of tidal gravity in Fennoscandia are explained by oceanic loading tides, and a chart for the M2-loading effect is given. The influence of crustal structure on the residuals is shortly discussed. A finite element model is used to calculate the loading effect for a laterally inhomogeneous structure.
Zusammenfassung Die Orogenese der skandinavischen und grönländischen Kaledoniden wird kurz beschrieben und die Struktur des skandinavisch-kaledonischen Teils skizziert. Die postkaledonische Dehnungstektonik vor der Bildung des Nordatlantiks sowie die Öffnung des nördlichen Nordatlantiks und die entsprechende Öffnungsrate werden kurz diskutiert.Berechnungen von Dichtemodellen mit Hilfe des Simplex-Algorithmus erlauben die Optimierung unter Berücksichtigung von Randbedingungen. Die Modelle zeigen eine ausgeprägte Depression der Moho unter den Kaledoniden und eine relativ dicke ozeanische Kruste. Die Übergangszone von kontinentaler zu ozeanischer Kruste hat eine äußerst komplizierte Struktur, jedoch lassen sich sowohl die Fortsetzung der Lofoten als auch der Rand des Vøring-PIateaus erkennen.Die Residuen von Schweregezeiten in Fennoskandien lassen sich durch ozeanische Auflasteffekte erklären, und eine Karte des M2-Meeresgezeiteneinflusses wird vorgestellt. Der Einfluß der Krustenstruktur auf die Residuen wird kurz diskutiert. Zur Modellierung lateraler Inhomogenitäten wurde ein finites Elementmodell entwickelt.
Résumé L'orogenèse des calédonides Scandinaves et groenlandaises sera décrit brièvement et la structure de la partie Scandinave ébauchee.La distension tectonique post-calédonienne avant la formation de l'Atlantique nord ainsi que l'ouverture du nordatlantique septentrional avec le taux d'expansion correspondant sont ensuite brièvement discutés.Des calculs de modèle de densité à l'aide de l'algorithme simplex permettent la détermination optimale sur le principe des moindres carrés, compte tenu des conditions aux limites.Les modèles montrent une dépression prononcée de la Moho sous les calédonides et une croûte océanique relativement épaisse. La zone de transition entre la croûte continentale et la croûtre océanique a une structure extrêmement compliquée; cependant on peut reconnaître la continuation des Lofoten ainsi que la marge du plateau de Vøring.Les résidus des marées terrestres fenno-scandiennes peuvent s'expliquer par des effets de charge océanique, et une carte de l'influence du terme M2 des marées est présentée. L'influence de la structure de la croûte sur les residues est discutée. Pour modeler les homogénéités latérales on a développé un modèle d'éléments finis.
- . - , , . Simplex-Algorithmus . . , , , . - ; . . , . 相似文献
15.
黄土滑坡体的稳定性是一项重要的地质调查内容,需要结合区域地震地质条件进行评价。对天水市麦积区税湾某黄土滑坡体采用并行电法探测和数值模拟2种手段进行论证评价。通过并行电法对滑坡体进行精细分层探查,确定滑坡体的赋存状态及主滑面特征参数,精确构建税湾滑坡体的数值模型,进一步分析其在地震荷载作用下的动力响应特征;同时,采用多种方法计算滑坡体在自然状态、小震和大震3种情况下的稳定安全系数,其中利用强度折减法所得系数分别为2.942、1.99和0.683,结果表明,大震情况下该黄土滑坡体将发生滑动破坏。其过程为早期在滑坡体上部出现拉裂破坏、中下部出现剪切破坏,随着震波的持续加载,斜坡上下剪切应变高值贯通,滑面形成。采用现场探测和数值模拟相结合的评价方法及其所取得的结果,可为当地滑坡防治提供指导,为类似滑坡的稳定性评价提供参考。 相似文献
16.
Abstract. A detail investigation of ore and gangue minerals was performed on the Doyashiki Kuroko deposits, Hokuroku basin, Japan for the first time. Main ore minerals are sphalerite, galena, pyrite, chalcopyrite, tetrahedrite-tennantite and digen-ite. Small amounts of enargite, wittichenite, electrum, covellite, bornite, marcasite and hematite are also observed. Quartz, barite and gypsum are common gangue minerals. Homogenization temperatures and salinities of fluid inclusions in quartz, sphalerite and barite range from 190 to 240C and 3.0 to 5.5 wt% NaCl equivalent, respectively. The FeS contents of sphalerite and Ag contents of electrum were 0.12 to 0.18 mol %, 39.0 to 39.6 atom %, respectively. The chemical composition of digenite as a primary mineral shows high sulfur contents. These data indicate that ore fluid responsible for digenite and associated ore minerals was characterized by a range of high sulfur fugacity with a moderate formation temperature. This is concordant with the mineral assemblage of bornite-pyrite and chalcopyrite, which shows high sulfur fugacity conditions. It seems that the mineralization closely associated with acidic volcanism has occurred around 13 Ma of Middle Miocene on the seafloor at the depth of about 1500 m. 相似文献
17.
Strontium and neodymium isotopes, measured on diverse mud and sand fractions of sediment in transit along all major Nile branches, identify detritus sourced from Precambrian basements, Mesozoic strata, and Tertiary volcanic rocks exposed along the shoulders of the East African rift and in Ethiopian highlands. Sr and Nd isotopic ratios reflect the weighted average of detrital components generated in different catchments, allowing us to discriminate provenance, calculate sediment budgets, and investigate grain-size and hydraulic-sorting effects. 87Sr/ 86Sr and 143Nd/ 144Nd range, respectively, from as high as 0.722 and as low as 0.5108 for sediment derived from Archean gneisses in northern Uganda, to 0.705 and 0.5127 for sediment derived from Neoproterozoic Ethiopian and Eritrean basements. 87Sr/ 86Sr and 143Nd/ 144Nd, ranging 0.705-0.709 and 0.5124-0.5130 for Blue Nile tributaries, are 0.704-0.705 and 0.5127-0.5128 for largely volcaniclastic sediments of River Tekeze-Atbara, and 0.705-0.706 and 0.5126-0.5127 for main Nile sediments upstream Lake Nasser.Model mantle derivation ages ( tDM), oldest in Uganda where sediment is principally derived from the Congo Craton (3.4-3.0 Ga for Victoria and Albert Nile), progressively decrease northward across the Saharan Metacraton, from 2.6 Ga (Bahr el Jebel in South Sudan), to 2.4-2.2 Ga (Bahr ez Zeraf across the Sudd), and finally 1.6-1.3 Ga (White Nile upstream Khartoum). Instead, tDM ages of Sobat mud increase from 0.9 to 1.5 Ga across the Machar marshes. TDM ages are younger for sediments shed by Ethiopian (1.2-0.7 Ga) and Eritrean basements (1.5-1.2 Ga), and youngest for sediments shed from Ethiopian flood basalts (0.3-0.2 Ga).Integrated geochemical, mineralogical, and settling-equivalence analyses suggest influence on the Nd isotopic signal by volcanic lithic grains and titanite rather than by LREE-rich monazite or allanite. Because contributions by ultradense minerals is subordinate, intrasample variability of Sr and Nd ratios is minor. In Blue Nile, Atbara and main Nile sediments of mixed provenance, however, the Nd ratio tends to be higher and tDM ages lower in largely volcaniclastic mud than in mixed volcaniclastic/metamorphiclastic sand.The complete geochemical database presented here, coupled with high-resolution bulk-petrography and heavy-mineral data, provides a key to reconstructing erosion patterns and detrital fluxes across the whole Nile basin, and to investigate and understand how sources of sediment have changed in the historical and pre-historical past in relation to shifting climatic zones across arid northern Africa. 相似文献
18.
Transmissivity ( T) is a basic hydraulic parameter of an aquifer that is utilized in most groundwater flow equations to understand the flow dynamics and is generally estimated from pumping tests. However, the cost of performing a large number of aquifer tests is expensive and time consuming. The fact that specific capacity ( S c) is correlated with hydraulic flow properties of aquifers simplifies parameter estimation mainly because specific capacity values are more abundant in groundwater databases than values of transmissivity and they offer another approach to estimate hydraulic parameters of aquifers. In this study, an empirical relation is derived using 214 pairs of transmissivity and specific capacity values that are obtained from pumping tests conducted on water wells penetrating the complex volcanic aquifers of Upper Awash Basin, central Ethiopia. Linear and logarithmic regression functions have been performed and it is found that the logarithmic relationship predicting transmissivity from specific capacity data has a better correlation ( R = 0.97) than the linear relationship ( R = 0.79). The two parameters are log-normally distributed, in which the logarithmic relation is also better statistically justified than the linear relation. Geostatistical estimations of the transmissivity were made using different inputs and methods. Measured and supplemented transmissivity data obtained from estimates using the derived empirical relation were krigged and cokrigged, spherical and exponential models were fitted to the experimental variograms. The cross-validation results showed that the best estimation is provided using the kriging procedure, the transmissivity field represented by the measured transmissivity data and the experimental variogram fitted with the exponential model. Based on the geostatistical approach, the transmissivity map of the aquifer is produced, which will be used for groundwater flow modeling of the study area that will follow this analysis. 相似文献
19.
Organic geochemical characterization of cutting samples from the Abu Hammad-1 and Matariya-1 wells elucidates the depositional environment and source rock potential of the Jurassic and Lower Cretaceous successions and the Middle Miocene to Pleistocene section in the southern and eastern Nile Delta Basin. The burial and thermal histories of the Mesozoic and Miocene sections were modeled using 1D basin modeling based on input data from the two wells. This study reveals fair to good gas-prone source rocks within the Upper Jurassic and Lower Cretaceous sections with total organic carbon (TOC) averaging 2.7% and hydrogen index (HI) up to 130 mg HC/g TOC. The pristane/ n-C 17 versus phytane/ n-C 18 correlation suggests mixed marine and terrestrial organic matter with predominant marine input. Burial and thermal history modeling reveals low thermal maturity due to low heat flow and thin overburden. These source rocks can generate gas in the western and northern parts of the basin where they are situated at deeper settings. In contrast, the thick Middle Miocene shows fair source rock quality (TOC averaging at 1.4%; HI maximizing at 183 mg HC/g TOC). The quality decreases towards the younger section where terrestrial organic matter is abundant. This section is similar to previously studied intervals in the eastern Nile Delta Basin but differs from equivalents in the central parts where the quality is better. Based on 1D modeling, the thick Middle Miocene source rocks just reached the oil generation stage, but microbial gas, however, is possible. 相似文献
|