首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北山明水地区花岗岩时代的确定及其地质意义   总被引:24,自引:2,他引:24       下载免费PDF全文
在详细的野外地质调查研究基础上,采用高精度的^40Ar-^39Ar测年技术,对北山明水地区大面积分布的花岗岩类岩体进行了同位素年龄测试,确定其为印支期侵入体。该岩体时代的准确界定,说明印支期构造-岩浆活动对北山地区的大地构造格架产生了十分重要的影响,它可能是由塔里木板块与哈萨克斯坦板块最终碰撞对接引起的。  相似文献   

2.
文章通过对南岭东段寨背和陂头岩基地质-岩石地球化学特征研究,判明它们的侵位深度(7.5 km)、围岩温度(250℃)及岩浆初始温度(950℃),建立起寨背-陂头岩基的数学计算模型,并计算得出:寨背和陂头花岗岩熔体侵位后,其初始温度降低至结晶温度所需的时间(Δtcol)分别为4.04 Ma(寨背岩基)和3.97 Ma(陂...  相似文献   

3.
Ion probe U‐Th‐Pb dating of zircons from the Late Archaean granites of the Norseman region of the southeastern Yilgarn shows the existence of two distinct magmatic episodes. Large regional tonalite and granodiorite plutons were emplaced between 2685 and 2690 Ma, whereas large regional granite, and small tonalite and leucogranite plutons that intrude the greenstones have ages of 2660–2665 Ma. A small body of granite that intrudes the western edge of the greenstones has an inferred emplacement of 2672 ± 7Ma, and contains inherited zircon that is ~2800 Ma. The monzogranite core from a second pluton in a similar structural position also contains ~2800 Ma zircon; this age is similar to published Sm‐Nd and Rb‐Sr whole rock ages for banded gneisses associated with other members of this suite of domal plutons and is interpreted as representing the age of a significant component within the source region for these distinctive rocks.

Available geochemical and isotopic data are interpreted as indicating derivation of both the older granodiorite and younger granite suites through anatexis of pre‐existing crust of broadly andesitic composition, whereas both the domal granites and the small, late tonalite plutons could have been derived by anatexis of heterogeneous material similar to that represented by the banded gneisses.

If regional metamorphism was related to the emplacement of large volumes of felsic magma within the upper crust, as suggested by Binns et al. (1976), then the Norseman area has probably undergone two periods of regional metamorphism of comparable intensity at approximately 2660 and 2685 Ma.  相似文献   

4.
Petrochemical and Rb-Sr, K-Ar and Sm-Nd isotopic data presented for the Mitterteich granite provide information on whole rock and mineral compositional characteristics, intrusion and cooling history, and protolith nature and put further constraints on the Variscan magmatic evolution in north-east Bavaria.The compositional characteristics classify the Mitterteich granite as a peraluminous (monzo-)granite (SiO2 67.3–73.5 wt.% ). Values for K2O/Na2O (> 1.2 and Al2O3/(CaO + N2O + K2O) (>1.1) are in the range of S-type granites. The rare earth elements show fractionated chondrite-normalized patterns (La N /Yb N =24–19) with negative Eu anomalies (Eu N /Eu N *=0.35–0.19). The micas have restricted ranges of major element composition, but reveal notable variations in trace element concentrations. Different biotite fractions of single specimens show a trend to lower concentrations of compatible elements in the finer fraction which can be explained as a result of asynchronous growth during the fractionation process. The PT conditions of crystallization of the magma based on muscovite and biotite is 600–640°C at 3 kbar. Regression of the whole rock samples gives an isochron corresponding to a 87Rb-87Sr age of 310 ± 7 Ma, initial 87Sr/86Sr of 0.7104±0.0010 (2 errors) and MSWD =0.03. Muscovite and biotite yield concordant K-Ar ages between 310 and 308 Ma, indicating a fast cooling rate of the granite intrusion. Nd T310values average –4.2±1.0. Nd model ages of 1.4 Ga suggest a source region of mid-Proterozoic age.The Rb-Sr isochron age and initial Sr ratio of the Mitterteich granite are indistinguishable from those of the adjacent Falkenberg granite, establishing a genetic link. However, the K-Ar mica ages suggest that the Mitterteich granite must have undergone a faster uplift or cooling history than Falkenberg. Confronted with the geochronological record of granite emplacement in north-east Bavaria, the new results substantiate the view of three key periods of magmatic activity around 330–325, 315–305 and 290 Ma.  相似文献   

5.
Six new high precision U-Pb zircon ID-TIMS ages plus thirteen in situ high spatial resolution U-Pb zircon LA-MC-ICPMS ages are reported from Jurassic plutonic(metaluminous to weakly peraluminous biotite granites)and Jurassic to Cretaceous hypabyssal(dacites)rocks from Macao.Despite its relatively small area(~30 km^2),the new ages tightly constrain the Macao granitic magmatism to two periods ranging from 164.5±0.6 Ma to 162.9±0.7 Ma and 156.6±0.2 Ma to 155.5±0.8 Ma,separated by ca.6 Ma.Inherited zircons point to the existence of a basement with ages up to Paleo-Proterozoic and late Archean in the region.In addition,younger dacitic rocks were dated at 150.6±0.6 Ma and<120 Ma.U-Pb zircon ages and whole-rock REE data of Macao granites indicate that the first pulse is also represented in Hong Kong and Southeast(SE)China,while magmatism with the chemical characteristics of the second pulse seems to not be represented outside Macao.The two granitic magmatic pulses have distinct mineralogical and geochemical features that support their discrete nature rather than a continuum of comagmatic activity and suggest that the Macao granitic suite was incrementally assembled during a period of ca.9 Ma,a hypothesis also extendable to the neighboring Hong Kong region for a time lapse of ca.24 Ma.In Macao,the transition from granitic magmatism(Middle to Upper Jurassic)to the younger dacite dykes(Upper Jurassic to Lower Cretaceous)most likely corresponds to a change in the regional tectonic setting,from an extensional regime related with foundering of the subducting paleoPacific plate during the Early Yanshanian period to the reestablishment of a normal subduction system in SE China during the Late Yanshanian period.  相似文献   

6.
Numerous pegmatite dikes occur in the Sparrow pluton (muscovite-biotite granite) and in the adjacent cordierite-zone schist-hornfels of the Yellowknife Supergroup. Where pegmatite dikes cut granite, the adjacent granite is enriched in muscovite and apatite, and depleted in K-feldspar. Mass transfer calculations, based on rock, mineral, and modal analyses, indicate that H, P, and locally B, Ti, Fe, and Ca were added, and K, Sr, Ba, and locally Na were removed (hydrogen metasomatism). In one alteration zone (8 cm wide) the calculated change (in terms of mols/gram of unaltered granite) is, 600 K-feldspar+24 biotite+190 plagioclase +[770 H+36 P+3 Ti+13 Fe+13 Ca] 400 muscovite+1100 quartz +11 apatite+[240 Na+260 K]. Where pegmatite dikes cut schist-hornfels (biotite-plagioclase-quartz), the adjacent rock is, in places, enriched in tourmaline, apatite, and quartz, and depleted in biotite and plagioclase. These alteration zones are variable in width; most are less than 20 cm wide. Mass transfer calculations, based on rock, mineral, and modal analyses, indicate that B, P, Zn, and locally Ca, Fe, and Al were added, and that Na, K, Fe, Rb, Sr, Ba, and locally Mg and Si were removed (boron metasomatism). In one zone, 2 cm wide, the calculated reaction (in units of mols/gram of unaltered schist) is, 730 biotite+1530 plagioclase +[1080 B+600 H+430 P+360 Ca] 480 tourmaline+480 quartz+115 apatite +[3630 Si+870 Na+590 K+110 Fe]. Changes in the volume fraction of muscovite, K-feldspar, tourmaline, and biotite, relative to distance from pegmatite, are progressive, and in most alteration zones may be expressed by use of an error-function equation. Some tourmaline zones are more complex. Zone formation is considered in terms of a steady-state reaction model in which grainboundary diffusion is the transport mechanism.  相似文献   

7.
The Fada N′Gourma area in Burkina Faso is underlain by Paleoproterozoic rocks that make the northeastern West-African Craton. This region is composed of NE-trending volcano-sedimentary belts and foliated tonalites, affected by several shear zones. A generation of younger, ∼2100 Ma-old, non-foliated biotite-bearing granites intrudes the former rock units. We have investigated the younger granite pluton of Kouare that was previously considered as forming a single body with the pluton of Satenga to the west, a pluton which likely belongs to the ∼20 Ma more recent Tenkodogo-Yamba batholith. Magnetic fabric measurements have been combined with microstructural observations and the analysis of field and aeromagnetic data. The granite encloses angular enclaves of the host tonalites. Magmatic microstructures are preserved inside the pluton and solid-state, high-temperature deformation features are ubiquitous at its periphery. The presence of steeply plunging lineations in the pluton of Kouare and its adjacent host-rocks suggests that large volumes of granitic magmas became crystallized while they were ascending through the crust that was softened and steepened close to the contact. Around Kouare, the foliation in the host tonalites conforms with a map-scale, Z-shaped fold in between NNE-trending shear zones, implying a bulk clockwise rotation of the material contained in-between the shear zones, including the emplacing pluton. Regionally, the Fada N′Gourma area is concluded to result from NW-shortening associated with transcurrent shearing and vertical transfer of granitic magmas. This study concludes that the ∼2200 Myears old juvenile crust of Burkina Faso was brittle before the intrusion of the biotite-granites, became softened close to them and that gravity-driven and regional scale wrench tectonics were active together.  相似文献   

8.
The Strzelin Massif in SW Poland (Central European Variscides) records a protracted igneous evolution, with three main magmatic stages: (1) tonalitic I, (2) granodioritic and (3) tonalitic II/granitic. In the northern part of this Massif, the Strzelin intrusion proper comprises three successively emplaced rock types: a medium-grained biotite granite (303 ± 2 Ma), a fine-grained biotite granite (283 ± 8 Ma) and a fine-grained biotite-muscovite granite; based on field evidence, the third variety postdates both types of the biotite granites. The structural data from the three granites, including their parallel, approximately E–W striking and steeply dipping lithological contacts and ENE–WSW trending subhorizontal magmatic lineations, suggest that the emplacement of all three successive granite varieties was controlled by an active, long-lived strike-slip fault, striking ESE–WNW, with a dextral sense of movement. After the emplacement of the youngest biotite-muscovite granite, the intrusion underwent brittle extension which produced “Q joints” striking NNW–SSE to N–S and dipping at 55–70° WSW to W, and showing evidence of broadly N–S directed sinistral displacements. The structural observations, supported by new geochronological data, indicate that the internal structure of the composite granitoid intrusion, including the faint magmatic foliation and lineation, formed in a long-lived strike-slip setting, different from the subsequent, post-emplacement extensional tectonics that controlled the development of brittle structures.  相似文献   

9.
We modelled thermo-rheological perturbations, related to the emplacement of a magmatic body in the upper crust. This approach was considered relevant for the areas characterized by elevated surface heat flow and chiefly for the geothermal fields. The numerical conductive thermal model applied to the Larderello geothermal area in Tuscany, allowed to constrain size, depth and timing of emplacement of the pluton. We inferred that the emplacement of a magmatic body, at a minimum depth of 3 km, having a horizontal extension of 14 km and a maximum thickness of 8 km, can reasonably reproduce the observed regional surface heat flow anomaly of the Larderello area, when 300 (± 100) kyr are elapsed from the magma emplacement. Even assuming an incremental growth, the first magma injection should not be older than 1 ± 0.3 Ma.

Results of the thermal model were used to set up a rheological model and to simulate the drifting of the brittle-ductile transition during the cooling of the pluton. A comparison with the K-horizon profile, a prominent seismic reflector in the Larderello area, was then performed. It was found that the K-horizon approximately corresponds with the pluton roof and with the current location of the brittle-ductile transition.  相似文献   


10.
 Calc-silicate granulites from Rayagada, north-central sector of Eastern Ghats granulite belt show a wide range of mineral assemblages and chemical compositions, which can be grouped as Gr. I (grossular- rich garnet-wollastonite-scapolite-calcite-clinopyroxene), Gr. II (andradite-rich garnet-scapolite-calcite-clinopyr- oxene), and Gr. III (scapolite-calcite-clinopyroxene-plagioclase) assemblages. Petrographic features suggest the following several reactions in the CaO–Al2O3–SiO2-vapor system: Mei+4Wo+Cal=3Grs+Qtz +2CO2, Mei+3Wo+2Cal=3Grs+CO2, Mei= 3An+Cal, Wo+CO2=Cal+Qtz, Mei+5Wo =3Grs+2Qtz+CO2, An+Wo=Grs+Qtz, Mei+ 5Cal+3Qtz=3Grs+6CO2, and the following reactions in the CaO–FeO–MgO–Al2O3–SiO2-vapor system: Cpxss+Scp+Wo=Grtss+Qtz+CO2, 4Hd+ 2Cal+O2=2Adr+2Qtz+2CO2, Cpxss+Scp= Grtss+Cal+Qtz. These reactions have been used to estimate peak T-X CO2 condition for these granulites. A maximum temperature of ∼920 °C has been calculated at an estimated pressure of 9 kbar. A T-X CO2 diagram shows an isobaric cooling from ∼920 °C to ∼815 °C. A range of X CO2 (0.50 at 920 °C to 0.25 at 815 °C) has been observed for Gr. I calc-silicate granulites based on the reaction sequences including coronal garnet-forming reactions. This sequence is suggestive of internal fluid buffering rather than external fluid influx and the differences in X CO2 conditions has been thought to be due to local buffering of fluid phases. Group II and Gr. III calc-silicate granulites, on the other hand, exhibit relatively lower temperature conditions. Received: 11 September 1995/Accepted: 20 June 1996  相似文献   

11.
The ascent and emplacement of granites in the upper crust is a major geological phenomenon accomplished by a number of different processes. The active processes determine the final geometry of the bodies and, in some favourable cases, the inverse problem of deducing mechanisms can be undertaken by relying on the geometry of plutons. This is the case of the La Bazana granitic pluton, a small Variscan igneous body that intruded Cambrian rocks of the Ossa-Morena Zone (SW Iberian Massif) in the core of a large late upright antiform. The granite shows no appreciable solid-state deformation, but has a late magmatic foliation whose orientation, derived from field observations, defines a gentle dome. The regional attitude of the main foliation in the country rock (parallel to the axial plane of recumbent folds) is NW–SE, but just around the granite, it accommodates to the dome shape of the pluton. Flattening in the host rock on top of the granite is indicated by boudinaged and folded veins, and appears to be caused by an upward pushing of the magma during its emplacement. The dome-shaped foliation of the granite, geometrically and kinematically congruent with the flattening in the host rock, can be related in the same way to the upward pushing of the magma. The level of final emplacement was deduced from the mineral associations in the thermal aureole to be of 7–10 km in depth. Models of the gravity anomaly related to the granite body show that the granite has a teardrop–pipe shape enlarged at its top. Diapiric ascent of the magma through the lower middle crust is inferred until reaching a high viscous level, where final emplacement accompanied by lateral expansion and vertical flattening took place. This natural example suggests that diapirism may be a viable mechanism for migration and emplacement of magmas, at least up to 7–10 km in depth, and it provides natural evidence for theoretical discussion on the ability of magmatic diapirs to pierce the crust.  相似文献   

12.
Rates of magma emplacement commonly vary as a function of tectonic setting. The late Caledonian granites of Britain and Ireland are associated with closure of the Iapetus Ocean and were emplaced into a varying regime of transpression and transtension throughout the Silurian and into the early Devonian. Here we evaluate a new approach for examining how magma volumes vary as a function of tectonic setting. Available radiometric ages from the late Caledonian granites are used to calculate probability density functions (age spectra), with each pluton weighted by outcrop area as a proxy for its volume. These spectra confirm an absence of magmatic activity during Iapetus subduction between c. 455 Ma and 425 Ma and a dominance of post-subduction magmas between c. 425 Ma and 380 Ma. We review possible reasons why, despite the widespread outcrop of the late Caledonian granites, magmatism appears absent during Iapetus subduction. These include shallow angle subduction or extensive erosion and tectonic removal of the arc.In contrast to previous work, we find no strong difference in the age or major element chemistry of post-subduction granites across all terranes. We propose a common causal mechanism in which the down-going Iapetus oceanic slab peeled back and detached beneath the suture following final Iapetus closure. The lithospheric mantle was delaminated beneath the suture and for about 100 km back beneath the Avalonian margin. While magma generation is largely a function of gravitationally driven lithosphere delamination, strike slip dominated kinematics in the overlying continental crust is what modulated granitic magma emplacement. Early Devonian (419–404 Ma) transtension permitted large volumes of granite emplacement, whereas the subsequent Acadian (late Early Devonian, 404–394 Ma) transpression reduced and eventually suppressed magma emplacement.  相似文献   

13.

Deformation partitioning in pluton wall‐rocks during granite intrusion that is synchronous with regional tectonism potentially creates structures suggesting different timing of emplacement. This is due to variations in style and intensity of fabric development, particularly porphyroblast‐matrix microstructures. In the South Palmer River region, detailed mapping plus microstructural examination of matrix and porphyroblast‐matrix relationships assist correlation of deformation elements across variations in deformation style and intensity. The results indicate that the emplacement of each granite body occurred during the compressional Permian D4 event. The fabrics that developed regionally and in the pluton/wall‐rock systems during D4 show differing degrees of intensity and style, which are spatially related to the intensity of D4 fabric development in the adjacent country rock. Granite isotopic ages support non‐diachronous formation of D4 structures across the region.  相似文献   

14.
A palaeomagnetic study of the Helmsdale granite (U/Pb-420 m.y., K/Ar-400 m.y.), northeast Scotland, has revealed a multicomponent remanence dominated by two characteristic axes of magnetization. The suggested oldest of these magnetizations, the direction of which is nearly horizontal and directed N-S, is thought to have been acquired in Upper Silurian-Lower Devonian times. The existence of this shallow direction of magnetization discounts a recent hypothesis of a ca. 2000 km sinistral offset along the Great Glen Fault. The second component of magnetization appears to be partly carried by haematite that apparently formed through disintegration of biotite and/or plagioclase. This secondary magnetization has a direction that can be associated with a Permian-early Mesozoic age. Similar overprinted magnetizations are characteristic features also in the Devonian sedimentary sequences north of Helmsdale.  相似文献   

15.
穹窿构造在北羌塘盆地普遍发育,成为该地区一种重要褶皱样式,其形成机制主要是燕山Ⅲ幕近南北向背斜与前期近东西向背斜的复合叠加。作者进一步指出,穹窿构造是北羌塘盆地最重要的圈闭构造,在油气有利地带近东西向大中型背斜中寻找穹窿构造是确定油气勘探靶区的重要途径。  相似文献   

16.
The Hernemäki and Sydänmaa granitoid plutons in southern Finland lie within the Svecokarelian metagreywackes, with an approximate age of 1.9 Ga. The Hernemäki porphyritic granite was emplaced and deformed early in the regional D2 deformation, and acquired a rectilinear foliation. The Sydänmaa pluton has a mainly concentric foliation, and its intrusion spanned D2. It was probably emplaced as a ballooning pluton. The magmas of the two plutons were possibly derived from a similar source, but evolved independently. Both plutons show plagioclasebiotite-hornblende fractionation. The Sydänmaa pluton is reversely zoned, with a granodiorite rim and a diorite core.Crystal-residual liquid segregation in a deep magma chamber produced a normal geochemical stratification. This fractionated magma was drained from the top down, and injected into a higher, final chamber. Hence, the granodiorite was emplaced before the diorite. There is a component of normal zonation, which suggests that early hornblende crystals were incorporated in the most fractionated granodiorite.
Zusammenfassung Die Hernemäki- und Sydänmaa-Granite in Südfinnland liegen innerhalb der svecokarelischen Metagrauwacken und haben ein ungefähres Alter von 1,9 Ga. Der porphyrische Hernemäki-Granit intrudierte frühzeitig während der regionalen D, Deformation. Er wurde zur gleichen Zeit deformiert, woraus eine geradlinige Schieferung resultierte. Der Sydänmaa-Granit, dessen Intrusoin die D,-Phase überdauerte, zeigt dagegen eine überwiegend konzentrische Schieferung. Sehr wahrscheinlich stieg er als ballonförmiger Granit auf.Die Magmen der zwei Plutone entstammen eventuell derselben Quelle, entwickelten sich aber unabhängig voneinander. Beide zeigen Plagioklas-Biotit-Hornblende Fraktionierung. Der Sydänmaa-Granit ist umgekehrt zoniert, er hat einen Granodiorit-Rand und einen Diorit-Kern. Residuale Flüssigkeitsdifferenzierung in einer tiefgelegenen Magmenkammer erzeugte eine normale geochemische Abfolge. Dieses fraktionierte Magma floß vom Top des Plutons nach unten ab und wurde in eine höher gelegene Kammer injiziert. Also intrudierte der Granodiorit vor dem Diorit. Es existiert eine Komponente normaler Zonierung, was für eine Aufnahme früh gebildeter Hornblendekristalle in den am stärksten fraktionierten Granodiorit spricht.

Résumé Les plutons granitoïdes de Hernemäki et Sydänmaa (Finlande méridionale) sont inclus dans les métagrauwackes svecocaréliennes, avec un âge approximatif de 1,9 Ga. Lors du début de la déformation régionale D2, le granite prophyrique de Hernemäki s'est mis en place et a été déformé, acquérant ainsi une structure linéaire. Le pluton de Sydänmaa, dont l'intrusion a dépassé la phase D2, possède une schistosité essentiellement concentrique. Il a été probablement mis en place par »ballooning«. Il est possible que les magmas des deux plutons dérivent d'une source similaire, mais ils ont évolué de manière indépendante. Les deux plutons montrent un fractionnement par cristallisation du plagioclase, de la biotite et de la hornblende. Celui de Sydänmaa présente une zonation inverse: bordure granodioritique et coeur dioritique. La séparation des cristaux et du liquide résiduel dans une chambre magmatique profonde a engendré une stratification géochimique normale. La partie supérieure de cet ensemble fractionné a ensuite été injectée dans une chambre définitive plus élevée, suivie des parties plus profondes: de la sorte, la granodiorite s'est mise en place avant la diorite. Il existe une composante de zonation normale, qui laisse supposer que de la hornblende, cristallisée lors des premiers stades, a été incorporée à la fraction granodioritique ultime.

Hernemki Sydnmaa ; 1,9 Ga. Hernemaki , D2, , . Sydnmaa, D2, . . - , , . - . Sydnmaa , , - . . . , , — . , .
  相似文献   

17.
西华山脉钨矿床的形成压力及有关花岗岩的侵位深度   总被引:13,自引:2,他引:13  
文章阐述了西华山黑钨矿-石英脉与普通热液石英脉的不同之处;分析了前人所获压力值较低(30~70MPa)的主要原因;利用黑钨矿-石英脉绿柱石中两相气液包裹体和不混溶硅酸盐熔融包裹体的有关资料及相关相图,求得西华山脉钨矿床的形成压力为200MPa。根据西华山脉钨矿床产出的地质特征以及岩石学、矿物学、稳定同位素和流体包裹体地球化学等证据论证了这一压力的合理性。  相似文献   

18.
《Geodinamica Acta》2013,26(3-4):197-211
This work deals with the magnetic susceptibility and its anisotropy (AMS) in the Variscan Millares pluton in the Central Pyrenees. The zonation of low-field magnetic susceptibility is consistent with the concentric arrangement of rock-types, with more basic compositions at the external areas. Magnetic foliations defined from AMS strike NE-SW and dip gently towards the NW. Magnetic foliations are mainly perpendicular and oblique to the elongation of the pluton in map view (NW-SE) and show a concentric pattern at the central part, where the more acid rocks crop out. Magnetic lineations are scattered between NW-SE and NE-SW and plunge shallowly to the N. In map view magnetic lineations are distributed in domains normal to the elongation of the pluton. The contours of P' (degree of magnetic anisotropy) are oriented NE-SW and bands of oblate and prolate ellipsoids alternate perpendicular to the elongation of the pluton in map view. P' is between 1.009 and 1.055 in 93% of the specimens. Such low values are currently recorded in granites having magmatic fabrics and for which the anisotropy is mainly carried by biotite. The attitude of the magnetic foliation and the magnetic lineation, the geometry of the pluton, and their relationship with the host-rock structure suggest an intrusion contemporary with a transpressional regime, syntectonic with the late stages of the Variscan orogeny.  相似文献   

19.
云南个旧市卡房矿田新山花岗岩侵位机制与成矿关系初探   总被引:1,自引:0,他引:1  
文章综合了前人对花岗岩侵位机制的研究,对花岗岩几种重要的侵位机制进行了详述.在此基础上结合野外工作和实践,从围岩蚀变、流体运移、断裂控制等几个方面对云南个旧新山花岗岩体的侵位机制类型进行了综合分析,认为新山花岗岩体侵位机制类型属于岩浆底拱作用,新山矿段内形成的矿床主要有接触带铜锡多金属矿床、层脉状铜锡矽卡岩硫化矿床、变...  相似文献   

20.
In order to constrain the temporal relationship between granite (sensu lato) emplacement and metamorphism, isotope work was carried out on the minerals zircon and apatite (U-Pb), garnet (Pb-Pb) and hornblende (Ar-Ar) from wall rock samples in the Shamva area in Zimbabwe. The area, encompassing parts of the Chinamora and Murehwa batholiths and a wedge-shaped greenstone belt segment in between, is commonly quoted in the literature as an example illustrating pluton emplacement processes and deformational models for the Archean. New U-Pb dating of apatite from a boudinaged pegmatite within mafic schists in the batholith-greenstone contact zone has yielded an age of 2619 +28/-24 Ma. This age is interpreted as the best estimation of the intrusion age of this unit, depending on the assumed closure temperature, and provides an upper age limit for the syntectonic emplacement of the now gneissic granites. Pb-Pb dating of late kinematic garnets in cordierite-bearing rocks within the greenstone belt wall rocks gives an age of 2623NJ Ma. Together, this timing of relatively late, syntectonic plutonism and metamorphic mineral growth at ca. 2.62 Ga compares well with existing zircon crystallization ages for felsic volcanics (2645dž Ma, 2643NJ Ma) and post-tectonic porphyritic monzogranites (2601ᆢ Ma). Ar-Ar hornblende ages for mafic schists from different areas within the greenstone belt wall rocks range between 2621 and 2498 Ma and have been interpreted to indicate mixing between metamorphic ages and cooling ages. The data support a geological model whereby volcanism and sedimentation are associated with an early phase of regional deformation at ca. 2.64 Ga, which may have started earlier and lasted longer, and evolves into the voluminous emplacement of granites (now gneissic granites) in the batholiths at approximately 2.62 Ga. Emplacement of post-tectonic tabular monzogranites takes place at ca. 2.60 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号