首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We present the photometric and spectroscopic evolution of the type IIn SN 1995G in NGC 1643, on the basis of 4 years of optical and infrared observations. This supernova shows very flat optical light curves similar to SN 1988Z, with a slow decline rate at all times. The spectra are characterized by strong Balmer lines with multiple components in emission and with a P Cygni absorption component blueshifted by only 700 km s−1. This feature indicates the presence of a slowly expanding shell above the SN ejecta as in the case of SNe 1994aj and 1996L. As in other SNe IIn, the slow luminosity decline cannot be explained only with a radioactive energy input, and an additional source of energy is required, most likely that produced by the interaction between supernova ejecta and a pre-existent circumstellar medium (CSM). It was estimated that the shell material has a density   n H≫108 cm-3  , consistent with the absence of forbidden lines in the spectra. About 2 years after the burst the low-velocity shell is largely overtaken by the SN ejecta and the luminosity drops at a faster rate.  相似文献   

2.
We present X-ray, broad-band optical and low-frequency radio observations of the bright type IIP supernova SN 2004et. The Chandra X-ray Observatory observed the supernova at three epochs, and the optical coverage spans a period of ∼470 d since explosion. The X-ray emission softens with time, and we characterize the X-ray luminosity evolution as   L X∝ t −0.4  . We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of  ∼2 × 10−6 M yr−1  . The optical light curve shows a pronounced plateau lasting for about 110 d. Temporal evolution of photospheric radius and colour temperature during the plateau phase is determined by making blackbody fits. We estimate the ejected mass of 56Ni to be  0.06 ± 0.03 M  . Using the expressions of Litvinova & Nadëzhin we estimate an explosion energy of  (0.98 ± 0.25) × 1051 erg  . We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier, Fransson & Nymark. These multiwavelength studies suggest a main-sequence progenitor mass of  ∼20 M  for SN 2004et.  相似文献   

3.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   

4.
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2–3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After ∼100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15±0.05 M of 56Ni which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K − L '=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.  相似文献   

5.
We present a multi-epoch quantitative spectroscopic analysis of the Type IIn supernova (Type IIn SN) 1994W, an event interpreted by Chugai et al. as stemming from the interaction between the ejecta of a SN and a  0.4 M  circumstellar shell ejected 1.5 yr before core collapse. During the brightening phase, our models suggest that the source of optical radiation is not unique, perhaps associated with an inner optically thick cold dense shell and outer optically thin shocked material. During the fading phase, our models support a single source of radiation, an hydrogen-rich optically thick layer with a near-constant temperature of ∼7000 K that recedes from a radius of  4.3 × 1015  at a peak to  2.3 × 1015 cm  40 d later. We reproduce the hybrid narrow-core broad-wing line profile shapes of SN 1994W at all times, invoking an optically thick photosphere exclusively (i.e. without any external optically thick shell). In SN 1994W, slow expansion makes scattering with thermal electrons a key escape mechanism for photons trapped in optically thick line cores, and allows the resulting broad incoherent electron-scattering wings to be seen around narrow-line cores. In SNe with larger expansion velocities, the thermal broadening due to incoherent scattering is masked by the broad profile and the dominant frequency redshift occasioned by bulk motions. Given the absence of broad lines at all times and the very low 56Ni yields, we speculate whether SN 1994W could have resulted from an interaction between two ejected shells without core collapse. The high conversion efficiency of kinetic to thermal energy may not require a SN-like energy budget for SN1994W.  相似文献   

6.
We report the detection of a very narrow P Cygni profile on top of the broad emission H α and H β lines of the Type IIn Supernova 1997eg. A similar feature has been detected in SN 1997ab, SN 1998S and SN 1995G . The detection of the narrow P Cygni profile indicates the existence of a dense circumstellar material (CSM), into which the ejecta of the supernova is expanding. From the analysis of the spectra of SN 1997eg we deduce (i) that such CSM is very dense  ( n ≳5×107 cm-3)  , (ii) that it has a low expanding velocity of about 160 km s−1. The origin of such dense CSM can be either a very dense progenitor wind  ( M˙ ∼10-2 M yr-1)  or a circumstellar shell product of the progenitor wind expanding into a high-pressure environment.  相似文献   

7.
We report the detection of the slow-moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well-resolved narrow (full width at zero intensity, FWZI ∼180 km s−1) P Cygni profile, both in Hα and Hβ, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density ( n  ≥ 107 cm−3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.  相似文献   

8.
We present a spectro-photometric catalogue of the evolution of supernova 1988Z, which combines new and published observations in the radio, optical and X-ray bands, with the aim of offering a comprehensive view of the evolution of this object and deriving the total energy radiated since its discovery. The major contribution to the total radiated energy comes at optical to X-ray frequencies, with a total emission of at least 2×1051 erg (for H0=50 km s−1 Mpc−1) in 8.5 yr. A model-dependent extrapolation of this value indicates that the total radiated energy may be as high as 1052 erg. The high value of the radiated energy supports a scenario in which most of the kinetic energy of the ejecta is thermalized and radiated in a short interaction with a dense circumstellar medium of nearly constant density. In this sense, 1988Z is not a supernova but a young and compact supernova remnant.  相似文献   

9.
We present spectroscopic and photometric observations of the peculiar Type II supernova (SN) 1998A. The light curves and spectra closely resemble those of SN 1987A, suggesting that the SN 1998A progenitor exploded when it was a compact blue supergiant. However, the comparison with SN 1987A also highlights some important differences: SN 1998A is more luminous and the spectra show bluer continua and larger expansion velocities at all epochs. These observational properties indicate that the explosion of SN 1998A is more energetic than SN 1987A and more typical of Type II supernovae. Comparing the observational data with simulations, we deduce that the progenitor of SN 1998A was a massive star  (∼25 M)  with a small pre-supernova radius  (≲6 × 1012 cm)  . The Ba  ii lines, unusually strong in SN 1987A and some faint II-P events, are almost normal in the case of SN 1998A, indicating that the temperature plays a key role in determining their strength.  相似文献   

10.
We present the results of the one-year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about  1000 km s−1  ) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about  3 × 10−3 M  , a total ejected mass of  8–13 M  and an explosion energy of about  3 × 1050 erg  .  相似文献   

11.
We present near-infrared spectroscopic observations of SN 1987A covering the period 1358 to 3158 d post explosion. This is the first time that IR spectra of a supernova have been obtained to such late epochs. The spectra comprise emission from both the ejecta and the bright, ring-shaped circumstellar medium (CSM). The most prominent CSM emission lines are recombination lines of H  i and He  i , and forbidden lines of [S  iii ] and [Fe  ii ]. The ejecta spectra include allowed lines of H  i , He  i and Na  i and forbidden lines of [Si  i ], [Fe  i ], [Fe  ii ] and possibly [S  i ]. The intensity ratios and widths of the H  i ejecta lines are consistent with a low-temperature Case B recombination spectrum arising from non-thermal ionization/excitation in an extended, adiabatically-cooled H envelope, as predicted by several authors. The slow decline of the ejecta forbidden lines, especially those of [Si  i ], indicates that pure non-thermal excitation was taking place, driven increasingly by the decay of 44Ti. The ejecta iron exhibits particularly high velocities  (4000–4500 km s-1)  , supporting scenarios where fast radioactive nickel is created and ejected just after the core bounce. In addition, the ejecta lines continue to exhibit blueshifts with values ∼−200 to −800 km s−1 to at least day 2000. These blueshifts, which first appeared around day 600, probably indicate that very dense concentrations of dust persist in the ejecta, although an alternative explanation of asymmetry in the excitation conditions is not ruled out.  相似文献   

12.
We present near (ground-based) and far ( ISO ) infrared spectroscopy of Sakurai's object. As in the case of the optical spectrum, between 1996 and 1997 April the near-infrared spectrum underwent a dramatic change to later spectral type, and there is some evidence that the spectrum continued to evolve during 1997. Molecular features of carbon-bearing molecules (CN, C2, CO) — corresponding to those seen in cool carbon stars — are now prominent in the 1–2.5 μ m range, and the 12C/13C ratio is low. The ISO data demonstrate the presence of hot circumstellar dust at a temperature of ∼ 680 K. If the dust shell is optically thin, the dust mass is ∼ 2.8 × 10−8 M⊙.  相似文献   

13.
Sakurai's object (V4334 Sgr) is a planetary nebula nucleus which is undergoing its final helium shell flash. This is the first of these rare and important events to be observable with non-optical instruments. We report the first radio detection, using a short (2-h) observation with the Very Large Array (VLA) at 4.86 GHz. The radio emission structure is coincident with the 34-arcsec diameter planetary nebula seen in optical emission lines. We find a statistical distance ∼ 3.8 ± 0.6 kpc, with a range of 1.9 <  D  < 5.3 kpc, depending on the planetary nebula (PN) mass. While we have no direct evidence for a new (post-flash) stellar wind, we estimate an upper limit to the mass-loss rate due to any such wind of 1.7 × 10−7 M⊙ yr−1. The number of emitting knots in the radio-visible nebula indicates an electron density of ∼ 2 × 108 m−3 in those knots, and a total emitting ionized mass of ∼ 0.15 M⊙, at an assumed distance of 3.8 kpc. The radio flux density indicates an Hβ flux of ∼ 6 × 10−16 W m−2, suggesting an extinction E ( B  −  V ) ∼ 1.15, comparable with reddening estimates in the direction of V4334 Sgr.  相似文献   

14.
We have analysed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (≲2.0 M) unevolved star and that the eccentricity of the orbit is 0.94±0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average , we find that a kick of ∼740 km s−1 is needed to account for the recently measured radial velocity of +430 km s−1 (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is ∼500 km s−1. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of ∼60 000 yr. Furthermore, we predict that the companion star has lost ∼10 per cent of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.  相似文献   

15.
We present a comprehensive multiwavelength temporal and spectral analysis of the 'fast rise exponential decay' GRB 070419A. The early-time emission in the γ-ray and X-ray bands can be explained by a central engine active for at least 250 s, while at late times the X-ray light curve displays a simple power-law decay. In contrast, the observed behaviour in the optical band is complex (from 102 up to 106 s). We investigate the light-curve behaviour in the context of the standard forward/reverse shock model; associating the peak in the optical light curve at ∼450 s with the fireball deceleration time results in a Lorenz factor  Γ≈ 350  at this time. In contrast, the shallow optical decay between 450 and 1500 s remains problematic, requiring a reverse shock component whose typical frequency is above the optical band at the optical peak time for it to be explained within the standard model. This predicts an increasing flux density for the forward shock component until   t ∼ 4 × 106 s  , inconsistent with the observed decay of the optical emission from   t ∼ 104 s  . A highly magnetized fireball is also ruled out due to unrealistic microphysic parameters and predicted light-curve behaviour that is not observed. We conclude that a long-lived central engine with a finely tuned energy injection rate and a sudden cessation of the injection is required to create the observed light curves, consistent with the same conditions that are invoked to explain the plateau phase of canonical X-ray light curves of γ-ray bursts.  相似文献   

16.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

17.
18.
Supernova 2002ic was an atypical Type Ia supernova (SN Ia) with evidence for substantial amounts of hydrogen associated with the system. Contrary to previous claims, we show that its unusual properties can be understood within the framework of one of the most favoured progenitor models, the so-called supersoft channel. This requires that the donor star was initially relatively massive  (∼3 M)  and that the system experienced a delayed dynamical instability, leading to a large amount of mass-loss from the system in the last few 104 yr before the explosion. This can produce the inferred hydrogen-rich circumstellar environment, most likely with a disc-like geometry. However, in order for this model to be feasible, it requires a larger accretion efficiency on to the white dwarf than is assumed in present parametrizations. If this is confirmed, it would most likely increase estimates for the frequency of the single-degenerate channel. Based on population synthesis simulations we estimate that not more than 1 in 100 SNe Ia should belong to this subgroup of SNe Ia.  相似文献   

19.
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest  3.0 × 10−4 M  by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least  ∼8 × 10−3 M  . This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.  相似文献   

20.
The variation in properties of Type Ia supernovae, the thermonuclear explosions of Chandrasekhar-mass carbon–oxygen white dwarfs, is caused by different nucleosynthetic outcomes of these explosions, which can be traced from the distribution of abundances in the ejecta. The composition stratification of the spectroscopically normal but rapidly declining SN 2004eo is studied by performing spectrum synthesis of a time-series of spectra obtained before and after maximum, and of one nebular spectrum obtained about eight months later. Early-time spectra indicate that the outer ejecta are dominated by oxygen and silicon, and contain other intermediate-mass elements, implying that the outer part of the star was subject only to partial burning. In the inner part, nuclear statistical equilibrium (NSE) material dominates, but the production of 56Ni was limited to  ∼0.43 ± 0.05   M  . An innermost zone containing  ∼0.25   M  of stable Fe-group material is also present. The relatively small amount of NSE material synthesized by SN 2004eo explains both the dimness and the rapidly evolving light curve of this supernova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号