首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We model the Galactic ensemble of helium stars using population synthesis techniques, assuming that all helium stars are formed in binaries. In this picture, single helium stars are produced by mergers of helium remnants of the components of close binaries (mainly, the merging of helium white dwarfs) or in the disruption of binaries with helium components during supernova explosions. The estimated total birthrate of helium stars in the Galaxy is 0.043 yr?1; the total number is 4 × 106; and the binarity rate is 76%. We construct a subsample of low-mass (MHe ? 2M) helium stars defined by observational selection effects: the limiting magnitude (VHe ≤ 16), ratio of the magnitudes of the components in binaries (VHeVcomp), and lower limit for the semiamplitude of the radial velocity required for detecting binarity (Kmin = 30 km s?1). The parameters of this subsample are in satisfactory agreement with observations of helium subdwarfs. In particular, the binarity rate in the selection-limited sample is 58%. We analyze the relations between the orbital periods and masses of helium subdwarfs and their companions in systems with various combinations of components. We predict that the overwhelming majority (~97%) of unobserved companions to helium stars will be white dwarfs, predominantly, carbon-oxygen white dwarfs.  相似文献   

3.
The paper considers possible observational implications of the presence of dark matter in the Galaxy in the form of dense gas clouds—clumpuscules with masses M c ~10?3 M and radii R c~3×1013 cm. The existence of such clouds is implied by modern interpretations of extreme scattering events—variations in quasar radio fluxes due to refraction in dense plasma condensations in the Galactic halo. The rate of collisions between these clouds is shown to be rather high: from 1 to 10M per year is ejected into the interstellar medium as a result of such collisions. The optical continuum and 21-cm emission from hot post-collision gas could be observable. Gas clouds composed of dark matter could be formed around O stars in an H II region with radius R~30 pc and emission measure EM?20 cm?6 pc. They could also be observable in the Hα line. The evaporation of clumpuscules by external ionizing radiation could be a substantial source of matter for the interstellar medium. Assuming that the total mass of matter entering the interstellar medium over the Hubble time does not exceed the mass of luminous matter in the Galaxy, upper limits are found for the cloud radii (R c<3.5×1012 cm) and the contribution of clouds to the surface density of the Galaxy (<50M pc?2). Dissipation of the kinetic energy of matter lost by clumpuscules could provide an efficient mechanism for heating gas in the Galactic halo.  相似文献   

4.
We investigate the physical characteristics of single, rapidly rotating white dwarfs, which could form as a result of a merger of two white dwarfs with different masses and filled Roche lobes, due to the radiation of gravitational waves. When the merging of the binary components occurs without loss of mass and angular momentum, the merger products are subject to secular instability, and the density in their cores does not exceed ~108 g/cm3. Models are constructed for rapidly rotating neutron stars, which could form after the collapse of rotating iron cores of evolved massive stars. Dynamically unstable neutron-star models are characterized by a shift of the maximum density from the rotational axis. The total momentum of such neutron stars is about half the maximum possible momentum for the evolved cores of massive stars.  相似文献   

5.
An efficient method for the detection and estimation of the parameters of the coronas of isolated white dwarfs possessing magnetic fields of about 107 G is tested. This method is based on the detection of thermal radiation of the coronal plasma at harmonics of the electron gyrofrequency, which is manifest as a polarized infrared excess. The Stokes parameters for the thermal cyclotron radiation from the hot corona of a white dwarf with a dipolar magnetic field are calculated. A new upper limit for the electron density, 1010 cm?3, in a corona with a temperature of ?106 K is found for the white dwarf G99-47 (WD 0553+053). This limit is a factor of 40 lower than the value derived earlier from ROSAT X-ray observations. Recommendations for subsequent infrared observations of isolated magnetic white dwarfs aimed at detecting their coronas or deriving better constraints on their parameters are presented.  相似文献   

6.
Usingthe “Scenario Machine” (a specialized numerical code formodeling the evolution of large ensembles of binary systems), we have studied the physical properties of rapidly rotating main-sequence binary stars (Be stars) with white-dwarf companions and their abundance in the Galaxy. The calculations are the first to take into account the cooling of the compact object and the effect of synchronization of the rotation on the evolution of Be stars in close binaries. The synchronization time scale can be shorter than the main-sequence lifetime of a Be star formed during the first mass transfer. This strongly influences the distribution of orbital periods for binary Be stars. In particular, it can explain the observed deficit of short-period Be binaries. According to our computations, the number of binary systems in the Galaxy containing a Be star and white dwarf is large: 70–80% of all Be stars in binaries should have degenerate dwarf companions. Based on our calculations, we conclude that the compact components in these systems have high surface temperatures. Despite their high surface temperatures, the detection of white dwarfs in such systems is hampered by the fact that the entire orbit of the white dwarf is embedded in the dense circumstellar envelope of the primary, and all the extreme-UV and soft X-ray emission of the compact object is absorbed by the Be star’s envelope. It may be possible to detect the white dwarfs via observations of helium emission lines of Be stars of not very early spectral types. The ultraviolet continuum energies of these stars are not sufficient to produce helium line emission. We also discuss numerical results for Be stars with other evolved companions, such as helium stars and neutron stars, and suggest an explanation for the absence of Be-black-hole binaries.  相似文献   

7.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

8.
Spectrophotometric observations are used to study the envelopes of the FeII nova V2467 Cyg and the HeN nova V2491 Cyg. The abundances of several elements in the nova envelopes and the envelope masses are estimated. The nitrogen mass abundance in the V2467 Cyg envelope is higher than the solar value by a factor of 186 and the oxygen abundance by the factor of 10. The nitrogen abundance in the envelope of V2491 Cyg exceeds the solar value by a factor of 56, the oxygen abundance by a factor of 12, and the neon abundance by a factor of 8. The masses of the envelopes were estimated to be 8.5×10?5 M for V2467 Cyg and 1.5×10?5 M for V2491 Cyg. These envelope elemental abundances and masses are in good agreement with those of low-mass CO white dwarfs (0.8 M ) and ONe white dwarfs (1.15 M ).  相似文献   

9.
Marsakov  V. A.  Koval’  V. V.  Gozha  M. L. 《Astronomy Reports》2019,63(4):274-288

A catalog of Galactic globular clusters has been compiled and used to analyze relations between the chemical and kinematic parameters of the clusters. The catalog contains positions, distances, luminosities, metallicites, and horizontal-branch morphology indices for 157 globular clusters, as well as space velocities for 72 globular clusters. For 69 globular clusters, these data are suppleented with the relative abundances of 28 chemical elements produced in various nuclear-synthesis processes, taken from 101 papers published between 1986 and 2018. The tendency for redder horizontal branches in lowmetallicity accreted globular clusters is discussed. The discrepancy between the criteria for cluster membership in the thick-disk and halo subsystems based on chemical and kinematic properties is considered. This is manifest through the fact that all metal-rich ([Fe/H] > ?1.0) clusters are located close to the center and plane of the Galaxy, regardless of their kinematic membership in particular Galaxy subsystems. An exception is three accreted clusters lost by a dwarf galaxy in Sagittarius. At the same time, the fraction of more distant clusters is high among metal-poorer clusters in any kinematically selected Galactic subsystem. In addition, all metal-rich clusters whose origins are related to the same protogalactic cloud are located in the [Fe/H]–[α/Fe] diagram considerably higher than the strip populated with field stars. All metal-poor clusters (most of them accreted) populate the entire width of the strip formed by high-velocity (i.e., presumably accreted) field stars. Stars of dwarf satellite galaxies (all of them being metal-poor) are located in this diagram much lower than accreted field stars. These facts suggest that all stellar objects in the accreted halo are remnants of galaxies with higher masses than those in the current environment of the Galaxy. Differences in the relative abundances of α-process elements among stellar objects of the Galaxy and surrounding dwarf satellite galaxies confirmthat the latter have left no appreciable stellar traces in the Galaxy, with the possible exception of the low-metallicity cluster Rup 106, which has low relative abundances of α-process elements.

  相似文献   

10.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

11.
A series of dynamical models of the Galaxy is constructed assuming that the entire disk is near the gravitational-stability limit. This imposes constraints on the dynamical and kinematic parameters of the main subsystems (the disk, bulge, and halo). The disk surface density in the solar neighborhood should not exceed 58 M/pc2. Further, we find that the observed local decrease in the rotational velocity at 6 kpc ? r ? 10 kpc is not associated with details of the radial distribution of matter in the Galaxy and instead results from dynamical processes or some other factors responsible for noncircular motions. It follows from the presence of a long-lived bar and the observed distribution of the stellar-velocity dispersion that the central maximum in the rotation curve at radius r ? 300 pc cannot be associated with a very concentrated bulge core. The best agreement between the observational data and the parameters of the dynamical models is achieved for a radial disk scale length of L ? 3 kpc. The relative contribution of the disk to the circular rotational velocity at r = 2.2L is 73%.  相似文献   

12.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

13.
The possibility of a conservative merger of a binary white dwarf whose components have similar masses is studied. Axially symmetrical models for single, rapidly rotating white dwarfs that are possible products of such mergers are constructed and their physical characteristics investigated. The merger products must be turbulent, and the viscosity of the electron gas is not sufficient to support the observed luminosities of massive, bright white dwarfs. The amount of dissipative energy and the timescale for its release are estimated.  相似文献   

14.
We derived Sr, Y, Zr, and Ce abundances for a sample of 74 cool dwarfs and subgiants with iron abundances, [Fe/H], between 0.25 and ?2.43. These estimates were obtained using synthetic spectra, assuming local thermodynamic equilibrium (LTE) for Y, Zr, and Ce, allowing for non-LTE conditions for Sr. We used high-resolution (λ/Δλ?40 000 and 60 000) spectra with signal-to-noise ratios between 50 and 200. We find that the Zr/Y, Sr/Y, and Sr/Zr ratios for the halo stars are the same in a wide metallicity range (?2.43 ≤ [Fe/H] ≤ ?0.90), within the errors, indicating a common origin for these elements at the epoch of halo formation. The Zr/Y ratios for thick-disk stars quickly decrease with increasing Ba abundance, indicating a lower rate of production of Zr compared to Y during active thick-disk formation. The thick-disk and halo stars display an increase in the [Zr/Ba] ratio with decreasing Ba abundance and a correlation of the Zr and Eu overabundances relative to Ba. The evolutionary behavior of the abundance ratios found for the thick-disk and halo stars does not agree with current models for the Galaxy’s chemical evolution. The abundance ratios of Y and Zr to Fe and Ba for thin-disk stars, as well as the abundance ratios within each group, are, on average, solar, though we note a slight decrease of Zr/Ba and Zr/Y with increasing Ba abundance. These results provide evidence for a dominance of asymptotic-giant-branch stars in the enrichment of the interstellar medium in heavy elements during the thin-disk epoch, in agreement with the predictions of the nucleosynthesis theory for the main s-process component.  相似文献   

15.
High-accuracy absolute proper motions, radial velocities, and distances have now been measured for a number of dwarf-galaxy companions of the Milky Way, making it possible to study their 3D dynamics. Galactic orbits for 11 such galaxies (Fornax, Sagittarius, Ursa Minor, LMC, SMC, Sculptor, Sextans, Carina, Draco, Leo I, Leo II) have been derived using two previously refined models for the Galactic potential with the Navarro–Frenk–White and Allen–Santillán expressions for the potential of the dark-matter halo, and two different masses for the Galaxy within 200 kpc—0.75 × 1012 M and 1.45 × 1012 M . The character of the orbits of most of these galaxies indicates that they are tightly gravitationally bound to the Milky Way, even with the lower-mass model for the gravitational potential. One exception is the most distant galaxy in the list, Leo I, whose orbit demonstrates that it is only weakly gravitationally bound, even using the higher-mass model of the gravitational potential.  相似文献   

16.
Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial–kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < ?1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called “low-metallicity tail” have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339–046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.  相似文献   

17.
We consider the astrophysical evolution of the Galaxy over large time scales, from early stages (an age of ~108 yrs) to the end of traditional stellar evolution (~1011 yrs). Despite the fact that the basic parameters of our stellar system (such as its size, mass, and general structure) have varied little over this time, variations in the characteristics of stars (their total luminosity, color, mass function, and chemical composition) are rather substantial. The interaction of the Galaxy with other stellar systems becomes an important factor in its evolution 100–1000 Gyr after its origin; however, we take the Galaxy to be isolated. In the model considered, the basic stages of Galactic evolution are as follows. The Galaxy forms as the result of the contraction (collapse) of a protogalactic cloud. The beginning of the Milky Way’s life—the relaxation period, which lasts about 1–2 Gyr—is characterized by active star formation and final structurization. The luminosity and colors of the Galaxy are correlated to the star formation rate (SFR). The young Galaxy intensely radiates high-energy photons, which are mostly absorbed by dust and re-emitted at IR wavelengths. In the subsequent period of steady-state evolution, the gas content in the Galactic disk gradually decreases; accordingly, the SFR decreases, reaching 3–5M /yr at the present epoch and decreasing to 0.03M /yr by an age of 100 Gyr. Essentially all other basic parameters of the Galaxy vary little. Later, the decrease in the SFR accelerates, since the evolution of stars with masses exceeding 0.4M (i.e., those able to lose matter and renew the supply of interstellar gas) comes to an end. The Galaxy enters a period of “dying”, and becomes fainter and redder. The variation of its chemical composition is manifested most appreciably in a dramatic enrichment of the interstellar gas in iron. The final “stellar epoch” in the life of the Galaxy is completed ~1013 yrs after its formation, when the evolution of the least massive stars comes to an end. By this time, the supplies of interstellar and intergalactic gas are exhausted, the remaining stars become dark, compact remnants, there is no further formation of new stars, and the Galactic disk no longer radiates. Eventually, infrequent outbursts originating from collisions of stellar remnants in the densest central regions of the Galaxy will remain the only source of emission.  相似文献   

18.
In this work, cold and hot, static and rotating white dwarf stars are investigated within the framework of classical physics, employing the Chandrasekhar equation of state. The main parameters of white dwarfs such as the central density, pressure, total mass and radius are calculated fulfilling the stability criteria for hot rotating stars. To construct rotating configurations the Hartle approach is involved. It is shown that the effects of finite temperatures become crucial in low-mass white dwarfs, whereas rotation is relevant in all mass range. The simultaneous accounting for temperature and rotation is critical in the calculation of the radii of white dwarfs. The results obtained in this work can be applied to explain a variety of observational data for white dwarfs from the Sloan Digital Sky Survey Data Releases.  相似文献   

19.
We present a compiled catalog of effective temperatures, surface gravities, iron and magnesium abundances, distances, velocity components, and orbital elements for stars in the solar neighborhood. The atmospheric parameters and iron abundances are averages of published values derived from model synthetic spectra for a total of about 2000 values in 80 publications. Our relative magnesium abundances were found from 1412 values in 31 publications for 876 dwarfs and subgiants using a three-step iterative averaging procedure, with weights assigned to each source of data as well as to each individual determination, and taking into account systematic deviations of each scale relative to the reduced mean scale. The estimated completeness for data sources containing more than five stars up to late December 2003 exceeds 90%. For the vast majority of stars in the catalog, the spatial-velocity components were derived from modern high-precision astrometric observations and their Galactic orbital elements were computed using a three-component model of the Galaxy, consisting of a disk, a bulge, and a massive extended halo.  相似文献   

20.
The results of spectropolarimetric observations of a number of magnetic white dwarfs obtained on the 6-m optical telescope of the Special Astrophysical Observatory are presented. The observations were carried out using the SCORPIO focal aperture-ratio reducer in a spectropolarimetric regime. Two characteristic dependences of the degree of polarization on the wavelength are observed. For one group of objects, the degree of linear polarization grows with wavelength, suggesting that the alignment of atoms and molecules in Rydberg states in the atmosphere of the white dwarf due to the action of its magnetic field influences scattering processes. The second group of objects displays an increase in the degrees of both linear and circular polarization with wavelength, providing evidence for the presence of protoplanetary disks around these magnetic white dwarfs, in which the alignment of circumstellar grains leads to the observed behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号