首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates experimentally the breaking wave height of multi-directional random waves passing over an impermeable submerged breakwater. Experiments have been conducted in a three-dimensional wave basin equipped with a multi-directional random wave generator. A special type of wave gauge has been newly devised to record the water surface elevations in the breaker zone as accurately as possible. The records are analyzed to estimate the location and limit of wave breaking. Comparisons have also been made with the results of regular waves. The influence of the incident wave conditions on the breaking wave height normalized by the breakwater dimensions has been investigated. Empirical formulae have been presented to estimate the breaking limit of multi-directional random waves based on the experimental records. The formulae have been tested and found to work well not only for multi-directional random waves, but for regular waves as well.  相似文献   

2.
为研究波浪聚焦特性,分析极端波浪的产生机理,采用非静压模型通过数值模拟的方法对波浪聚焦的影响因素进行了详细研究。本文采用SWASH非静压波浪模型,模型垂向均匀分三层以保证足够的色散精度以及非线性精度来高效准确的模拟波浪在变化地形上的传播。研究发现在最大波浪未发生破碎时,波浪在半圆形凸起斜坡浅滩上传播,波浪聚焦是波高增大的最主要原因。初始kR(波数与浅滩半径乘积)值对波浪在该地形上的聚焦特性有着重要影响。初始kR越大,最大波高位置距聚焦地形坡脚的距离越远。当kR在1.4π~4.05π之间时,随着kR的减小,最大相对波高先增大后减小,当kR=2.45π时,最大相对波高达到极大值,可达2.48倍初始波高。  相似文献   

3.
The random long wave runup on a beach of constant slope is studied in the framework of the rigorous solutions of the nonlinear shallow water theory. These solutions are used for calculation of the statistical characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. It is shown that probability characteristics of the runup heights and extreme values of the shoreline velocity coincide in the linear and nonlinear theory. If the incident wave is represented by a narrow-band Gaussian process, the runup height is described by a Rayleigh distribution. The significant runup height can also be found within the linear theory of long wave shoaling and runup. Wave nonlinearity nearshore does not affect the Gaussian probability distribution of the velocity of the moving shoreline. However the vertical displacement of the moving shoreline becomes non-Gaussian due to the wave nonlinearity. Its statistical moments are calculated analytically. It is shown that the mean water level increases (setup), the skewness is always positive and kurtosis is positive for weak amplitude waves and negative for strongly nonlinear waves. The probability of the wave breaking is also calculated and conditions of validity of the analytical theory are discussed. The spectral and statistical characteristics of the moving shoreline are studied in detail. It is shown that the probability of coastal floods grows with an increase in the nonlinearity. Randomness of the wave field nearshore leads to an increase in the wave spectrum width.  相似文献   

4.
Non-hydrostatic models such as Surface WAves till SHore (SWASH) resolve many of the relevant physics in coastal wave propagation such as dispersion, shoaling, refraction, dissipation and nonlinearity. However, for efficiency, they assume a single-valued surface and therefore do not resolve some aspects of breaking waves such as wave overturning, turbulence generation, and air entrainment. To study the ability of such models to represent nonlinear wave dynamics and statistics in a dissipative surf zone, we compare simulations with SWASH to flume observations of random, unidirectional waves, incident on a 1:30 planar beach. The experimental data includes a wide variation in the incident wave fields, so that model performance can be studied over a large range of wave conditions. Our results show that, without specific calibration, the model accurately predicts second-order bulk parameters such as wave height and period, the details of the spectral evolution, and higher-order statistics, such as skewness and asymmetry of the waves. Monte Carlo simulations show that the model can capture the principal features of the wave probability density function in the surf zone, and that the spectral distribution of dissipation in SWASH is proportional to the frequency squared, which is consistent with observations reported by earlier studies. These results show that relatively efficient non-hydrostatic models such as SWASH can be successfully used to parametrize surf zone wave processes.  相似文献   

5.
If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.  相似文献   

6.
Cross-shore hydrodynamics within an unsaturated surf zone   总被引:1,自引:0,他引:1  
This paper concerns the hydrodynamics induced by random waves incident on a steep beach. New experimental results are presented on surface elevation and kinematic probability density functions, cross-shore variation in wave heights, the fraction of broken waves and velocity moments. The surf zone is found to be unsaturated at incident wave frequencies, with a significant proportion of the incident wave energy remaining at the shoreline in the form of bores. Wave heights in both the outer and inner surf zones are best described by a full Rayleigh distribution [Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. J. Geophys. Res. 88, 5925–5938], rather than a truncated Rayleigh distribution as used by Battjes and Janssen (1978) [Battjes, J.A, Janssen, J.P., 1978. Energy loss and setup due to breaking of random waves. Proc. 16th Int. Conf. Coastal Eng. ASCE, New York, pp. 569–588]. A new parametric wave transformation model is outlined which provides explicit expressions for the fraction of broken waves and the energy dissipation rate within the surf zone. On steep beaches, the model appears to offer improved predictive capabilities over the original Battjes and Janssen model. Cross-shore variations in the velocity variance and velocity moments are best described using Linear Gaussian wave theory, with less than 20% of the velocity variance in the inner surf zone due to low frequency energy.  相似文献   

7.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

8.
In this paper,the long-term statistical properties of wave height in an idealized square harborwith a partial opening are studied.The incident waves are propagated into the harbor numerically by the fi-nite/infinite element method using three different wave models:(1)monochromatic wave train,(2)long-crested random wave train,and(3)short-crested random wave train.This study shows that for a giv-en incident wave,the wave height in the harbor is affected by the wave model used.For long-term estima-tion of wave height exceedance probability,it is recommended that the waves be propagated into the har-bor using the random wave model,and that wave heights be computed by use of the Rayleigh probabilitydistribution.  相似文献   

9.
Experimental Study on the Bed Shear Stress Under Breaking Waves   总被引:1,自引:0,他引:1  
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.  相似文献   

10.
在理论分析的基础上利用根、茎、叶均可量化的植物模型,开展波浪水槽实验。通过改变实验水深、入射波高、植物分布密度等因素,研究不规则波在植物群传播时沿程波高衰减特性,利用快速傅里叶变换对不规则波频谱变化情况进行分析。结果表明,各植物模型消波效果较好,但很少出现植物消波的边界效应,不规则波沿植物群的波高变化情况多数时与Mendez理论曲线不一致,植物群各部分的波能衰减情况并无固定的变化规律。此外,波能衰减集中在谱峰频率处,且入射波高越大,透射波与入射波之间的谱峰值差值越大,但透射波的频谱宽度与入射波相比无明显变化。本研究可为采用近岸植物消波护岸提供一定的理论依据。  相似文献   

11.
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons is proposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio. The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height. Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for the variable cannot be easily defined. In this study, however, it can be derived from the relationship between the maximum and significant waves in a nonbreaking environment. Some examples are shown to validate the derived probability density function for the wave ratio parameter. By introducing the wave height ratio into reliability analysis of caisson breakwater, the maximum wave height can be used as an independent and primary random variable, which means that the risk of caisson failure during its lifetime can be evaluated realistically.  相似文献   

12.
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons is proposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio.The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height.Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for the  相似文献   

13.
任春平  刘宇  赵喜萍 《海洋学报》2021,43(6):118-128
沿岸流不稳定运动属于超低频运动,研究它的传播特性,有助于深入理解其对岸滩演变、污染物、鱼卵等输移、迁移的影响.本文基于小波相干谱对所选实验波况进行了研究,分析了规则波、随机波入射情况下沿岸流不稳定运动传播特性,并讨论了入射波高、周期、坡度等对其的影响.结果表明,不规则波更易诱导出沿岸流不稳定运动,且在不规则波情况下,不...  相似文献   

14.
《Applied Ocean Research》2005,27(4-5):235-250
The present study describes an experimental investigation of breaking criteria of deepwater wind waves under strong wind action. In a wind wave flume, waves were generated using different wind speeds and measured at different locations to obtain wave trains of no, intermittent, or frequent breaking. Water particle movement and free surface elevation were measured simultaneously using a PIV system and a wave gauge, respectively. For wind waves, not all the waves measured at a fixed location are breaking waves, and the breaking of a larger wave is not guaranteed. However, the larger the wave height, the larger the probability of breaking. In order to take as many breaking waves as possible for the cases of frequent breaking, we used the waves whose heights were close to the highest one-tenth wave height. The experimental results showed that the geometric or kinematic breaking criteria could not explain the occurrence of breaking of wind waves. On the other hand, the vertical acceleration beneath the wave crest was close to the previously suggested limit value, −0.5g, when frequent breaking of large waves occurred, indicating that the dynamic breaking criterion would be good for discriminating breaking waves under a strong wind action.  相似文献   

15.
A run-up of irregular long sea waves on a beach with a constant slope is studied within the framework of the nonlinear shallow-water theory. This problem was solved earlier for deterministic waves, both periodic and pulse ones, using the approach based on the Legendre transform. Within this approach, it is possible to get an exact solution for the displacement of a moving shoreline in the case of irregular-wave run-up as well. It is used to determine statistical moments of run-up characteristics. It is shown that nonlinearity in a run-up wave does not affect the velocity moments of the shoreline motion but influences the moments of mobile shoreline displacement. In particular, the randomness of a wave field yields an increase in the average water level on the shore and decrease in standard deviation. The asymmetry calculated through the third moment is positive and increases with the amplitude growth. The kurtosis calculated through the fourth moment turns out to be positive at small amplitudes and negative at large ones. All this points to the advantage of the wave run-up on the shore as compared to a backwash at least for small-amplitude waves, even if an incident wave is a Gaussian stationary process with a zero mean. The probability of wave breaking during run-up and the applicability limits for the derived equations are discussed.  相似文献   

16.
The ability of a sailing yacht to re-right due to the effect of a breaking wave is investigated experimentally. Free and constrained physical models with varying mast height and centre of gravity were tested. To investigate the influence of retained mast height on sway force and roll moment, models were constrained by attachment to a force balance for sway motion tests in calm water and stationary tests in regular and breaking waves. Free model testing, with varying mast height and centre of gravity position, were carried out in breaking waves. For these tests, model motions in six degrees of freedom were measured using photogrammetry. The constrained tests showed that while the mast height had little effect on forces when stationary in waves it had a large effect when in sway motion. As models experience large sway motions when subject to a breaking wave the mast remnant plays a critical role in re-righting dynamics. This work demonstrates that re-righting probability is more dependent on mast height retention and wave characteristics than vertical centre of gravity. This conclusion has direct implications on re-righting safety assessment as the dominant design feature in most safety standards is the vertical centre of gravity.  相似文献   

17.
贾美军  姚宇  陈松贵  郭辉群 《海洋工程》2020,38(6):53-59,123
通过测试一系列不规则波工况研究了防浪建筑物存在下珊瑚礁海岸附近短波、低频长波和增水的变化规律,并对比了防浪建筑物的不同位置情况。分析结果表明:波浪在沿礁传播过程中,短波波高沿礁坪持续衰减,低频长波波高沿礁坪逐渐增大,波浪增水则沿礁坪基本保持不变;海岸附近短波随着防浪建筑物与礁缘距离的变大而减小,低频长波则在防浪建筑物处于礁坪后部时达到最大,防浪建筑物位置的变化对于礁坪波浪增水的影响可以忽略。通过理论分析证明了珊瑚礁地形上低频长波是由于群波破碎造成的破碎点移动而产生的;当特定波况作用于特定位置的防浪建筑物时,低频长波在礁坪上会发生一阶共振效应导致其能量在海岸附近达到最大值。  相似文献   

18.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   

19.
A semi-implicit shallow-water and Boussinesq model has been developed to account for random wave breaking, impact and overtopping of steep sea walls including recurves. At a given time breaking is said to occur if the wave height to water depth ratio for each individual wave exceeds a critical value of 0.6 and the Boussinesq terms are simply switched off. The example is presented of waves breaking over an offshore reef and then ceasing to break as they propagate inshore into deeper water and finally break as they run up a slope. This is not possible with the conventional criterion of a single onset of breaking based on rate of change of surface elevation which was also found to be less effective generally. The runup distribution on the slope inshore of the reef was well predicted. The model is tested against field data for overtopping available for Anchorsholme, Blackpool and corresponding 1:15 scale wave flume tests. Reflection of breaking waves impacting a steep sea wall is represented as a partial reversal of momentum flux with an empirically defined coefficient. Offshore to nearshore significant wave height variation was reasonably predicted although nearshore model spectra showed distinct differences from the experiments. The breaking wave shape described by a shape parameter was also not well represented as might be expected for such a simple model. Overtopping agreement between model, field and flume was generally good although repeatability of two nominally identical flume experiments was only within 25%. Different distributions of random phase between spectral components can cause overall overtopping rates to differ by up to a factor of two. Predictions of mean discharge by EurOtop methods were within a factor of two of experimental measurements.  相似文献   

20.
Quantification of nearshore morphology based on video imaging   总被引:1,自引:0,他引:1  
The Argus network is a series of video cameras with aerial views of beaches around the world. Intensity contrasts in time exposure images reveal areas of preferential breaking, which are closely tied to underlying bed morphology. This relationship was further investigated, including the effect of tidal elevation and wave height on the presence of wave breaking and its cross-shore position over sand bars. Computerized methods of objectively extracting shoreline and sand bar locations were developed, allowing the vast quantity of data generated by Argus to be more effectively examined. Once features were identified in the images, daily alongshore mean values were taken to create time series of shoreline and sand bar location, which were analyzed for annual cycles and cross-correlated with wave data to investigate environmental forcing and response.These data extraction techniques were applied to images from four of the Argus camera sites. A relationship between wave height and shoreline location was found in which increased wave heights resulted in more landward shoreline positions; given the short lag times over which this correlation was significant, and that the strong annual signal in wave height was not replicated in the shoreline time series, it is likely that this relationship is a result of set-up during periods of large waves. Wave height was also found to have an effect on sand bar location, whereby an increase in wave height resulted in offshore bar migration. This correlation was significant over much longer time lags than the relationship between wave height and shoreline location, and a strong annual signal was found in the location of almost all observed bars, indicating that the sand bars are migrating with changes in wave height. In the case of the site with multiple sand bars, the offshore bars responded more significantly to changes in wave height, whereas the innermost bar seemed to be shielded from incident wave energy by breaking over the other bars. A relationship was also found between a site's mean wave height and inner sand bar location; sites with the highest wave heights tended to have sand bars farther from shore than those with relatively low wave heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号