首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
托莫尔日特-赛坝沟蛇绿混杂岩带位于柴北缘结合带东段,对该蛇绿混杂岩带中的变火山岩进行了系统的年代学及岩石地球化学研究。结果表明,变基性火山岩SiO2含量为47.78%~50.01%,MgO含量为4.52%~9.36%,~TFeO含量为8.00%~14.94%,K2O含量为0.04%~0.80%,Na2O含量为1.02%~4.20%,具典型的拉斑玄武质岩浆特征。微量元素上表现出轻稀土元素弱亏损,富集大离子亲石元素,亏损Nb、Ta等高场强元素特征,表明该基性岩很可能形成于弧后盆地环境。LA-ICP-MS锆石U-Pb测年结果显示,变基性火山岩年龄为480.1±1.8 Ma。综合区域地质资料,认为原特提斯洋在早奥陶世已经开始了俯冲消减作用。  相似文献   

2.
3.
The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U–Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U–Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ε Nd (t) values varying from 0.1 to 3.5 and single-stage Nd model ages (T DM1 = 0.65–0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ε Hf (t) values (4.6 to 13.5) and single-stage Hf model ages (T DM1?=?0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting (~5–15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the mantle material was supplied by the ascendance of a hot asthenosphere triggered by the roll-back of the Paleo-Tethyan oceanic lithosphere. The rising melts were accompanied by fractional crystallization and encountered no or minor crustal contamination en route to the surface. Taking into account these geochemical data and integrating them with regional geological evidence, we propose a slab roll-back model; this model suggests that the Gokcedere gabbroic pluton originated in a back-arc extensional environment associated with the southward subduction of the Paleo-Tethyan oceanic lithosphere during the early Jurassic period. Such an extensional event led to the opening of the northern branch of the Neotethys as a back-arc basin. Consequently, we conclude that the gabbroic pluton was related to intensive extensional tectonic events, which peaked during the early Jurassic in response to the roll-back of Paleo-Tethyan oceanic slab in the final stage of oceanic closure.  相似文献   

4.
After a review of the rock sequences and evolution of the eastern and central terranes of Hoggar, this paper focusses on the Neoproterozoic subduction-related evolution and collision stages in the central–western part of the Tuareg shield. Rock sequences are described and compared with their counterparts identified in the western and the eastern terranes exposed in Hoggar and northern Mali. The Pharusian terrane that is described in detail, is floored in the east by the Iskel basement, a Mesoproterozoic arc-type terrane cratonized around 840 Ma and in the southeast by Late Paleoproterozoic rock sequences (1.85–1.75 Ga) similar to those from northwestern Hoggar. Unconformable Late Neoproterozoic volcanosedimentary formations that mainly encompass volcanic greywackes were deposited in troughs adjacent to subduction-related andesitic volcanic ridges during the c. 690–650 Ma period. Abundant arc-related pre-collisional calc-alkaline batholiths (650–635 Ma) intruded the volcanic and volcaniclastic units at rather shallow crustal levels prior to collisional processes. The main E–W shortening in the Pharusian arc-type crust occurred through several stages of transpression and produced overall greenschist facies regional metamorphism and upright folding, thus precluding significant crustal thickening. It was accompanied by the shallow emplacement of calc-alkaline batholiths and plutons. Ages of syn-collisional granitoids range from 620 Ma in the western terranes, to 580 Ma in the Pharusian terrane, thus indicating a severe diachronism. After infill of molassic basins unconformable above the Pan-African greenschists, renewed dextral transpression took place in longitudinal domains such as the Adrar fault. The lithology, volcanic and plutonic suites, deep greenschist facies metamorphism, structures and kinematics from the Adrar fault molassic belt previously considered as Neoproterozoic are described in detail. The younger late-kinematic plutons emplaced in the Pharusian terrane at 523 Ma [Lithos 45 (1998) 245] relate to a Cambrian tectonic pulse that post-dates molasse deposition. The new geodynamic scenario presented considers several paleosubductions. The major east-dipping subduction, corresponding to the closure of a large Pan-African oceanic domain in the west (680–620 Ma) post-dates an older west-dipping “Pharusian” subduction (690–650 Ma?) to the east of the eastern Pharusian terrane. Such a diachronism is suggested by the 690 Ma old eclogites of the western part of the LATEA terrane of central Hoggar [J. African Earth Sci. this volume (2003)] that are nearly synchronous with the building up of the Pharusian terrane, thus suggesting that the 4°50 lithospheric fault represents a reactivated cryptic suture.  相似文献   

5.
Analyses of Lower Permian or older basalts and associated dykes of the Juchatengo sequence indicate that they are rift tholeiites that formed in a continental rift or back-arc tectonic setting. Age constraints include a Middle Permian fossil recovered from the tectonically overlying sediments and a cross-cutting, post-tectonic pluton dated by K/Ar on hornblende at 282±6 Ma. A location adjacent to the Oaxacan Complex or other old continental crust is suggested by (1) an Ndi isotopic value of −8.95 and a TDM age of 1487 Ma in the overlying sediments, which are similar to the Oaxacan Complex; (2) enrichment of incompatible elements in the lavas, suggesting old crustal contamination; and (3) the presence of Permian–Triassic calc-alkaline plutons that stitch the Juchatengo–Oaxaca boundary. The possible tectonic models depend on the age of the Juchatengo basalts, which requires future geochronological work. If the Juchatengo basalts are Permo-Carboniferous, they could have formed near the eastern edge of a back-arc basin: the contemporaneous arc would have rifted away to the west. Eastward migration of the arc magmatism indicated by the Permian–Triassic calc-alkaline plutonism may reflect shallowing of the dip of the subduction zone, which probably also produced the deformation of the Juchatengo sequence.  相似文献   

6.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

7.
New 40Ar/39Ar and published 14C ages constrain voluminous mafic volcanism of the Kamchatka back-arc to Miocene (3–6 Ma) and Late Pleistocene to Holocene (<1 Ma) times. Trace elements and isotopic compositions show that older rocks derived from a depleted mantle through subduction fluid-flux melting (>20%). Younger rocks form in a back arc by lower melting degrees involving enriched mantle components. The arc front and Central Kamchatka Depression are also underlain by plateau lavas and shield volcanoes of Late Pleistocene age. The focus of these voluminous eruptions thus migrated in time and may be the result of a high fluid flux in a setting where the Emperor seamount subducts and the slab steepens during rollback during terrain accretions. The northern termination of Holocene volcanism locates the edge of the subducting Pacific plate below Kamchatka, a “slab-edge-effect” is not observed in the back arc region.  相似文献   

8.
On the eastern extremity of the Jiaodong peninsula, China, shoshonitic magmas have been injected into the supracrustal rocks of the Sulu ultra-high pressure (UHP) terrane during the crustal exhumation phase. These granitoids (collectively termed the Shidao igneous complex or Jiazishan alkaline complex) show geochemical and isotopic signatures of an enriched subcontinental lithospheric mantle and intruded soon after the subducted Yangtze crust had reached peak metamorphic pressure conditions (240–220 Ma). We have applied various geochronometers to an alkali-gabbro sample from the Jiazishan pluton and the results allow reconstruction of the Triassic-to-present thermal history. Initial rapid cooling of the gabbro at crustal depths is indicated by the close agreement between the Sm-Nd mineral isochron age (228?±?36 Ma) and the Rb-Sr biotite age (207?±?1) Ma. This interpretation is confirmed by previously published U-Pb zircon ages (225–209 Ma), and 40Ar/39Ar amphibole and K-feldspar ages (~214 Ma) from the Jiazishan syenites. A titanite fission-track age of 166?±?8 Ma (closure temperature range 285–240°C) records widespread Jurassic magmatism in the Jiaodong peninsula, indicating that the gabbro reached upper crustal levels before it was reheated by nearby Jurassic plutons. A subsequent cooling and reheating event is indicated by an apatite fission-track age of 106?±?6 Ma which coincides with the emplacement of the adjacent Weideshan pluton (108?±?2 Ma) and postdates a period of regional lithospheric thinning beneath eastern China. A period of slow cooling (or thermal stability) from late Cretaceous to early Tertiary, documented by an apatite (U-Th)/He age of 39?±?5 Ma, was followed by a final stage of more enhanced cooling since the late Eocene. Results of this work imply that the eastern Sulu terrane has experienced a complex cooling and reheating history. Our data are consistent with a model of initial rapid cooling (sudden exhumation) of the UHP terrane, driven by the release of buoyancy forces, followed by two progressively slower cooling intervals (both after renewed crustal reheating) during the Jurassic and Cretaceous.  相似文献   

9.
The volcanic (basaltic, basalt andesitic, andesitic, and rhyolitic) porphyric rocks of the Tsagan-Zaba complex are studied in the Olkhon composite terrane of the Central Asian foldbelt. The concordant U-Pb (SHRIMP-II) age of single zircon grains from rhyolites (492 ± 5 Ma) may be interpreted as the period of formation of the Tsagan-Zaba complex. The volcanic rocks of this complex are characterized by clear suprasubduction geochemical features and positive ?Nd(t) values. The similar ages, compositions, and ?Nd(t) values of the studied volcanic rocks and gabbroic rocks of the Birkhin pluton allow us to combine them into a common Birkhin volcano-plutonic association, which may be considered as a fragment of a section of the mature island arc of ~500 Ma in age. The gabbroic rocks may be interpreted as the middle part of this section, whereas the volcanic and volcanosedimentary rocks belong to its upper part. The section was disintegrated 470–460 Ma ago, when the Early Paleozoic island arc was accreted to the southern flank of the Siberian craton in the course of the oblique collision and became a part of the Olkhon composite terrane.  相似文献   

10.
First comprehensive investigations of the Cuonadong leucogranite exposed in North Himalayan gneiss dome of southern Tibet are presented in this study. The SIMS U–Pb ages of oscillatory zircon rims scatter in a wide range from 34.1 to 16.0 Ma, and the Cuonadong leucogranite probably emplaced at 16.0 Ma. High-precision 40Ar/39Ar dating on a muscovite sample yields an essentially flat age spectrum with consistent plateau and isochron ages, indicating that the Cuonadong leucogranite cooled below 450 °C at 14 Ma. Based on the youngest zircon U–Pb age and muscovite 40Ar/39Ar age, the Cuonadong leucogranite experienced rapid cooling with a rate of 119 °C/Myr from 16 to 14 Ma. The geochronological data of this undeformed leucogranite also suggest that the ductile extension of the South Tibetan Detachment System in the eastern Himalaya ceased by ca. 14 Ma. Furthermore, the initial Sr–Nd isotopic compositions and Nd model ages demonstrate that the leucogranite was derived from metapelitic source within the Greater Himalayan Crystalline Complex. The distinct Ba depletion with high Rb/Sr ratios and negative Eu anomalies make it clear that the leucogranite melts were generated by breakdown of muscovite under fluid-absent conditions.  相似文献   

11.
The eastern Himalayan syntaxis in southeastern Tibet consists of the Lhasa terrane, High Himalayan rocks and Indus‐Tsangpo suture zone. The Lhasa terrane constitutes the hangingwall of a subduction zone, whereas the High Himalayan rocks represent the subducted Indian continent. Our petrological and geochronological data reveal that the Lhasa terrane has undergone two stages of medium‐P metamorphism: an early granulite facies event at c. 90 Ma and a late amphibolite facies event at 36–33 Ma. However, the High Himalayan rocks experienced only a single high‐P granulite facies metamorphic event at 37–32 Ma. It is inferred that the Late Cretaceous (c. 90 Ma) medium‐P metamorphism of the southern Lhasa terrane resulted from a northward subduction of the Neo‐Tethyan ocean, and that the Oligocene (37–32 Ma) high‐P (1.8–1.4 GPa) rocks of the High Himalayan and coeval medium‐P (0.8–1.1 GPa) rocks of the Lhasa terrane represent paired metamorphic belts that resulted from the northward subduction of the Indian continent beneath Asia. Our results provide robust constraints on the Mesozoic and Cenozoic tectonic evolution of south Tibet.  相似文献   

12.
ABSTRACT

This article presents new zircon U–Pb geochronology, Hf isotopic, and whole-rock major- and trace-element geochemical data that provide insights into the petrogenesis and tectonic history of the Riwanchaka granodiorite porphyries of Central Qiangtang, Tibet. Zircon U–Pb ages of 236–230 Ma indicate an early Late Triassic age of emplacement of the porphyries, and zircon Hf isotopic data yield εHf(t) values of – 7.0 to – 1.5 and ancient zircon Hf crustal model ages (TDMC) of 1524–1220 Ma. The granodiorite porphyries are characterized by low K2O contents, high Mg# values, and relatively high Cr and Ni contents. They are classified as I-type calc-alkaline granite and are considered to have formed through the anatexis of ancient mafic crustal rocks with contributions from mantle-derived components. The geochemistry and isotopic compositions of all samples are similar to those of magmatic rocks that originated in the South Qiangtang crust. However, field observations indicate that the pluton intrudes the North Qiangtang crust, and we propose that the granodiorite porphyries were derived by partial melting of subducted continental crust of the South Qiangtang terrane. These new data have been integrated with data from previous studies to construct a new model of slab rollback during northward subduction of the Southern Qiangtang continental crust at ca. 245–226 Ma, thereby improving our understanding of magmatic processes involved in continental subduction in collision settings.  相似文献   

13.
Blueschist exposed in the northwestern Qiangtang terrane, northern Tibet, western China (~84°30′ E, 34°24′ N), provides new constraints on the tectonic evolution of Qiangtang as well as northern Tibet. The blueschist represented by lawsonite- and glaucophane-bearing assemblages equilibrated at 375–400 °C and ~11 kbar. 40Ar-39Ar analysis on mineral separate from one blueschist sample yielded a well-defined plateau age of ~242 Ma. Geochemical studies show the blueschist is metamorphosed within-plate basalts. The high pressure-low temperature blueschist indicates a Triassic event of lithosphere subduction, and clearly represents an extension of the central Qiangtang metamorphic belt, and defines an in?situ suture between eastern and western Qiangtang.  相似文献   

14.
The North Qilian Orogenic Belt (NQOB), which consists of ophiolitic mélange and island-arc assemblages containing many granites, blueschists, and eclogites, lies between the Alax and Qilian terranes in northwestern China. The Minleyaogou and Niuxinshan granitoids occur at the northern and southern margins, respectively, in the middle segment of the NQOB. The Minleyaogou pluton is granodiorite in composition, whereas the Niuxinshan pluton consists mainly of red granite with minor grey quartz diorite. Geochemically, the Minleyaogou granite differs from the Niuxinshan granite in that it contains a smaller range in SiO2, has lower total alkalis, and is more peraluminous. Both granitoids are magnesian but the Niuxinshan granite is alkali-calcic, whereas the Minleyaogou granodiorite is calcic. Both granitoids have similar chondrite-normalized rare earth element patterns with light rare earth element enrichment and negative Eu anomalies. They have pronounced negative Ba, Nb, Sr, P, and Ti anomalies indicating that they have an affinity to island-arc or active continental margin magmatism. SHRIMP U–Pb dating of zircons from the granitoids yields a formation age of 477 Ma for the Niuxinshan granite and 463 Ma for the Minleyaogou granodiorite. These ages, combined with the geochemistry and locations of the plutons, suggest that they formed by the double subduction of the North Qilian oceanic plate during early Palaeozoic time. Formation of the Niuxinshan granite may be related to southward subduction under the Qilian terrane at 477 Ma, whereas the Minleyaogou granodiorite was formed by northward subduction at 463 Ma under the Alax terrane.  相似文献   

15.
The multiple high‐pressure (HP), low‐temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction‐ and continental accretion‐related evolution of the eastern limb of the long‐lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe‐Mg‐carpholite in three metasedimentary units of the Gondwana‐derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single‐continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with PT estimates (chlorite thermometry, phengite barometry, multi‐equilibrium thermobarometry), on carpholite‐bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite‐bearing assemblages were retrogressed through greenschist‐facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post‐collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tav?anl? Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian‐type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll‐back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.  相似文献   

16.
The Cobequid Highlands in the Canadian Appalachian orogen lie within Avalonia adjacent to the Meguma Terrane. U-Pb (zircon) data show that the age range of voluminous bimodal plutonism in the highlands is from 358 to 363 Ma (late Devonian). This age range is much narrower than that previously suggested by Rb/Sr geochronology and confirms that the Cobequid Highlands preserve the youngest large-scale plutonic event in the Canadian Appalachians. Late Palaeozoic tectonic history of the Appalachian orogen is profoundly influenced by predominantly dextral motion on the Avalon-Meguma terrane boundary. This age of plutonism is coeval with previously published 40Ar/39Ar (muscovite) plateau ages derived from shear zones in the Meguma terrane adjacent to the terrane boundary, which is defined by the Minas fault zone. The NNE trending structural grain of the Appalachian orogen is disturbed in this area by the E-W Minas fault zone and pluton emplacement may have been associated with motion along this terrane boundary.  相似文献   

17.
藏南冈底斯岩基东段石炭纪岩浆作用记录   总被引:3,自引:3,他引:0  
藏南冈底斯岩基记录了大量中生代和新生代以来的岩浆作用信息,虽然晚古生代的岩浆岩报道较少,但对限定拉萨地块在新特提斯洋俯冲之前的构造作用具有重要意义。本文通过综合已有资料,进一步对加查县和朗县晚古生代花岗岩开展了锆石U-Pb地质年代学及全岩元素地球化学组成的研究。加查县和郎县花岗片麻岩的原岩年龄分别为~344.8Ma和344.0~362.0Ma,表明加查和朗县岩体都形成于石炭纪。这些岩石具有较高的SiO2含量(67.46%~75.33%),Al2O3含量较低(12.66%~15.82%),CaO含量为0.79%~4.32%,FeO和MgO的含量分别为0.48%~3.00%和0.28%~1.64%。依据它们的K2O/Na2O比值,这些岩石可分为富钾和富钠两个演化系列。这些岩石富集轻稀土元素,亏损Nb、Ta和Ti,但Zr和Hf无明显异常。地球化学特征和年代学信息表明:(1)冈底斯岩基东段石炭纪花岗岩形成于弧后伸展环境,可能与古特提斯洋向冈瓦纳大陆北缘的俯冲作用有关;(2)镁铁质岩浆演化形成富钠花岗岩,幔源岩浆和中下地壳岩熔体的混合形成富钾花岗岩;和(3)石炭纪岩浆作用持续时间至少~30Myr。  相似文献   

18.
胶东地区是目前我国最重要的金矿产地,已累积探明黄金储量接近5000t。金矿在胶东地区分布非常不均,主要集中在胶北地体,而胶东东部地区金矿产出较少。晚侏罗世的玲珑花岗岩是胶北金矿区最重要的赋矿围岩之一。虽然胶东东部同样有晚侏罗世花岗岩发育,但赋存金矿较少,因此前人对东部这些花岗岩体的研究相对较少。本文选取胶东东部的文登岩体和垛崮山岩体进行了锆石U-Pb定年和Hf同位素分析,同时收集整理了胶北地体的玲珑岩体数据,通过开展胶东东部及西北部同一时期岩体的差异性研究,为该区金成矿作用的研究提供重要线索。分析结果显示,文登岩体和垛崮山岩体的形成时代为晚侏罗世(~160Ma),与玲珑岩体时代一致。三个岩体均含有较多的三叠纪(~230Ma)和新元古代(~780Ma)的继承锆石,表明晚侏罗世花岗岩的岩浆源区主要为经历了超高压变质作用的扬子板块。不同的是,玲珑岩体中有更多的华北板块物源的年龄记录(~1400Ma、~1700Ma、~2500Ma),垛崮山岩体中这些年龄的继承锆石少于玲珑岩体,而文登岩体更少。文登岩体、垛崮山岩体的新生岩浆锆石ε;(t)值范围分别为-30.7~-20.3和-27.5~-17.9,玲珑岩体的新生岩浆锆石ε;(t)值的变化范围更广,在-29.3~-9.3之间,而且呈现出从文登岩体到垛崮山岩体到玲珑岩体,ε;(160Ma)值逐渐增高的现象。其原因可能是扬子板块与华北板块碰撞后,幔源岩浆底侵并诱发加厚的地壳发生部分熔融,形成花岗岩。在此过程中胶北地体深部受到幔源物质的影响,从而对金及成矿相关元素产生一定的预富集作用,而同时期胶东东部地区未受到明显的地幔物质影响,可能是该区金矿产出较少的原因之一。  相似文献   

19.
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.  相似文献   

20.
The Güira de Jauco metamorphic sole, below the Moa-Baracoa ophiolite (eastern Cuba), contains strongly deformed amphibolites formed at peak metamorphic conditions of 650–660°C, approximately 8.6 kbar (~30 km depth). The geochemistry, based on immobile elements of the amphibolites, suggests oceanic lithosphere protholiths with a variable subduction component in a supra-subduction zone environment. The geochemical similarity and tectonic relations among the amphibolites and the basic rocks from the overlying ophiolite suggest a similar origin and protholith. New hornblende 40Ar/39Ar cooling ages of 77–81 Ma obtained for the amphibolites agree with this hypothesis, and indicate formation and cooling/exhumation of the sole in Late Cretaceous times. The cooling ages, geochemical evidence for a back-arc setting of formation of the mafic protoliths, and regional geology of the region allow proposal of the inception of a new SW-dipping subduction zone in the back-arc region of the northern Caribbean arc during the Late Cretaceous (ca. 90–85 Ma). Subduction inception was almost synchronous with the main plume pulse of the Caribbean–Colombian Oceanic Plateau (92–88 Ma) and occurred around 15 million years before arc-continent collision (75 Ma–Eocene) at the northern leading edge of the Caribbean plate. This chronological framework suggests a plate reorganization process in the region triggered by the Caribbean–Colombian mantle plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号