首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we derive analytical solutions of the first two moments (mean and variance) of pressure head for one-dimensional steady state unsaturated flow in a randomly heterogeneous layered soil column under random boundary conditions. We first linearize the steady state unsaturated flow equations by Kirchhoff transformation and solve the moments of the transformed variable up to second order in terms of σY and σβ, the standard deviations of log hydraulic conductivity Y=ln(Ks) and of the log pore size distribution parameter β=ln(α). In addition, we also give solutions for the mean and variance of the unsaturated hydraulic conductivity. The analytical solutions of moment equations are validated via Monte Carlo simulations.  相似文献   

2.
This work presents a rigorous numerical validation of analytical stochastic models of steady state unsaturated flow in heterogeneous porous media. It also provides a crucial link between stochastic theory based on simplifying assumptions and empirical field and simulation evidence of variably saturated flow in actual or realistic hypothetical heterogeneous porous media. Statistical properties of unsaturated hydraulic conductivity, soil water tension, and soil water flux in heterogeneous soils are investigated through high resolution Monte Carlo simulations of a wide range of steady state flow problems in a quasi-unbounded domain. In agreement with assumptions in analytical stochastic models of unsaturated flow, hydraulic conductivity and soil water tension are found to be lognormally and normally distributed, respectively. In contrast, simulations indicate that in moderate to strong variable conductivity fields, longitudinal flux is highly skewed. Transverse flux distributions are leptokurtic. the moments of the probability distributions obtained from Monte Carlo simulations are compared to modified first-order analytical models. Under moderate to strong heterogeneous soil flux conditions (σ2y≥1), analytical solutions overestimate variability in soil water tension by up to 40% as soil heterogeneity increases, and underestimate variability of both flux components by up to a factor 5. Theoretically predicted model (cross-)covariance agree well with the numerical sample (cross-)covarianaces. Statistical moments are shown to be consistent with observed physical characteristics of unsaturated flow in heterogeneous soils.©1998 Elsevier Science Limited. All rights reserved  相似文献   

3.
We present expressions satisfied by the first statistical moments (mean and variance–covariance) of travel time and trajectory of conservative solute particles advected in a three-dimensional heterogeneous aquifer under uniform in the mean flow conditions. Closure of the model is obtained by means of a consistent second-order expansion in σY (standard deviation of the log hydraulic conductivity) of (statistical) moments of quantities of interest. As such, the results obtained are nominally limited to mildly non-uniform fields, with σY < 1. Resulting mean and variance of particles travel time and trajectory are functions of first and second moments and cross-moments of trajectory and velocity components. Our solution is applicable to infinite domains and is free of distributional assumptions. As an important application of the methodology we obtain closed-form expressions for the unconditional mean and variance of travel time and particle trajectory for isotropic log-conductivity domain characterized by an exponential variogram. This allows us to recover the non linear behavior of mean travel time versus distance, in agreement with numerical results published in the literature, as well as a non-linear effect in the mean trajectory. The analysis of trajectory variance allows recovering some known results regarding transverse macro-dispersion, evidencing some limitations typical of perturbation theory.  相似文献   

4.
5.
Numerical simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity, , were conducted in a three-dimensional heterogeneous and statistically isotropic aquifer. The hydraulic conductivity, K(x), is modeled as a random field which is assumed to be log-normally distributed with an exponential covariance. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume and the plume centroid variances were simulated with 1600 Monte Carlo (MC) runs for three variances of log K, Y2=0.09, 0.23, and 0.46, and a square source normal to of three dimensionless lengths. It is showed that 1600 MC runs are needed to obtain stabilized results in mildly heterogeneous aquifers of Y20.5 and that large uncertainty may exist in the simulated results if less MC runs are used, especially for the transverse second spatial moments and the plume centroid variance in transverse directions. The simulated longitudinal second spatial moment and the plume centroid variance in longitudinal direction fit well to the first-order theoretical results while the simulated transverse moments are generally larger than the first-order values. The ergodic condition for the second spatial moments is far from reaching in all cases simulated and transport in transverse directions may reach ergodic condition much slower than that in longitudinal direction.  相似文献   

6.
In this work, we describe a stochastic method for delineating well capture zones in randomly heterogeneous porous media. We use a moment equation (ME) approach to derive the time-dependent mean capture zones and their associated uncertainties. The mean capture zones are determined by reversely tracking the non-reactive particles released at a small circle around each pumping well. The uncertainty associated with the mean capture zones is calculated based on the particle displacement covariances for nonstationary flow fields. The flow statistics are obtained either by directly solving the flow moment equations derived with a first-order ME approach or from Monte Carlo simulations (MCS) of flow. The former constitutes a full ME approach, and the latter is a hybrid ME-MCS approach. This hybrid approach is invoked to examine the validity of the transport component of the stochastic method by ensuring that the ME and MC transport approaches have the same underlying flow statistics. We compared both the full ME and the hybrid ME-MCS results with those obtained with a full MCS approach. It has been found that the three approaches are in excellent agreement when the variability of hydrologic conductivity is small (Y2=0.16). At a moderate variability (Y2=0.5), the hybrid ME-MCS and the full MCS results are in excellent agreement whereas the results from the full ME approach deviate slightly from the full MCS results. This indicates that the (first-order) ME transport approach renders a good approximation at this level of variability and that the first-order ME flow approximation may not be sufficiently accurate at this variability in the case of divergent/convergent flow. The first-order ME flow approach may need to be corrected with higher-order terms even for moderate Y2 although the literature results reveal that the first-order ME flow approach is robust for uniform mean flow (i.e., giving accurate results even with Y2 as large as four).  相似文献   

7.
8.
In this study, the KLME approach, a moment-equation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random fields with known means and covariance functions. The F, R, H and Q are first decomposed into finite series in terms of Gaussian standard random variables by the Karhunen–Loeve expansion. The hydraulic head h is then represented by a perturbation expansion, and each term in the perturbation expansion is written as the products of unknown coefficients and Gaussian standard random variables obtained from the Karhunen–Loeve expansions. A series of deterministic partial differential equations are derived from the stochastic partial differential equations. The resulting equations for uncorrelated and perfectly correlated cases are developed. The equations can be solved sequentially from low to high order by the finite element method. We examine the accuracy of the KLME approach for the groundwater flow subject to uncorrelated or perfectly correlated random inputs and study the capability of the KLME method for predicting the head variance in the presence of various spatially variable parameters. It is shown that the proposed numerical model gives accurate results at a much smaller computational cost than the Monte Carlo simulation.  相似文献   

9.
In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity Y=lnKsY=lnKs. The hydraulic head h   and average pore-velocity vv are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity vv computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.  相似文献   

10.
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157–1182, (2013a), with the sample of random difference ξ?=?ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.  相似文献   

11.
Magnetotelluric response is studied for an inhomogeneous medium having conductivity varying linearly with depth as σ(z) =σ1z. For a medium having conductivity increasing linearly with depth, the phase of the impedance approaches 60° at long periods and the apparent resistivity becomes log (ρa) = 2 log (1.36/α1/3) — 1/3 log (T'). The asymptote of log (ρa, T'→∞) when plotted against log (T') has a constant gradient —1/3 and has an intercept on the log (T') axis, which equals 6 log (1.36/α1/3). When a homogeneous layer with a moderate thickness overlies an inhomogeneous half-space, this layer does not affect the asymptote, but it affects the cut-off period and pushes this toward the long period direction. For a medium having conductivity decreasing linearly with depth, the impedance is equivalent to that of a Cagniard two-layer model; the intercept period related to the thickness is T'01(h2/2)2. Homogeneous multilayer approximations to an inhomogeneous layer are also investigated, and it is shown that the fit to the model variation depends on the number of layers and the layer parameters chosen.  相似文献   

12.
An Eulerian perturbation approach was applied to develop a method of moment for solute transport in a nonstationary, fractured medium. The conceptualized fractured medium is described through a dual-porosity model. Stochastic governing equations for mean concentration and concentration covariance were analytically derived to the first-order accuracy of log-conductivity variance and solved with a numerical method––a finite difference method. The developed method is called a numerical Eulerian method of moment (NEMM). This method was compared with the stationary transport theory [Water Resour. Res. 36(7) (2000) 1665] for predicting mean concentration and its spatial moments. The comparison indicated that the two methods matched very well in predicting first and second spatial moments. NEMM solutions were also compared with Monte Carlo simulations for solute transport in stationary fractured media. The results of the two methods were consistent for calculating small log conductivity variance. The theory was then used to study effects of various parameters and nonstationarity of the medium on flow and transport processes. Results indicated that medium nonstationarity would significantly influence the solute transport process. The nonstationary transport theory relaxes many assumptions adopted in stationary theories and paves the way for applying the NEMM to many environmental projects, especially in analyzing uncertainty of solute transport.  相似文献   

13.
Oxygen partial pressure influences the electrical conductivity of enstatite because it affects the point-defect concentrations in enstatite. The behavior of the defect concentrations with PO2 are obtained for open and partially closed conditions. On the basis of the defect variations, models for the effect of oxygen pressure on the conductivity can be constructed. The first-order models, which assume one defect type transporting all the charge, predict log(PO2) vs. log(conductivity) slopes that are not in agreement with slopes derived from measurements on natural single crystals of enstatite. The disagreement could result from: (1) more defect species being present than the assumed charge-neutrality condition gives, or (2) the charge is transported by two or more defect types. The data suggesting the latter is the cause of the disagreement, and hence the experimentally derived activation energies must be treated carefully.  相似文献   

14.
An iterative co-conditional Monte Carlo simulation (IMCS) approach is developed. This approach derives co-conditional means and variances of transmissivity (T), head (φ), and Darcy's velocity (q), based on sparse measurements of T and φ in heterogeneous, confined aquifers under steady-state conditions. It employs the classical co-conditional Monte Carlo simulation technique (MCS) and a successive linear estimator that takes advantage of our prior knowledge of the covariances of T and φ and their cross-covariance. In each co-conditional simulation, a linear estimate of T is improved by solving the governing steady-state flow equation, and by updating residual covariance functions iteratively. These residual covariance functions consist of the covariance of T and φ and the cross-covariance function between T and φ. As a result, the non-linear relationship between T and φ is incorporated in the co-conditional realizations of T and φ. Once the T and φ fields are generated, a corresponding velocity field is also calculated. The average of the co-conditioned realizations of T, φ, and q yields the co-conditional mean fields. In turn, the co-conditional variances of T, φ, and q, which measure the reduction in uncertainty due to measurements of T and φ, are derived. Results of our numerical experiments show that the co-conditional means from IMCS for T and φ fields have smaller mean square errors (MSE) than those from a non-iterative Monte Carlo simulation (NIMCS). Finally, the co-conditional mean fields from IMCS are compared with the co-conditional effective fields from a direct approach developed by Yeh et al. [Water Resources Research, 32(1), 85–92, 1996].  相似文献   

15.
Probabilistic analysis by Monte Carlo Simulation method (MCSM) is a computationally prohibitive task for a reactive solute transport involving coupled PDEs with nonlinear source/sink terms in 3-D heterogeneous porous media. The perturbation based stochastic finite element method (SFEM) is an attractive alternative method to MCSM as it is computationally efficient and accurate. In the present study SFEM is developed for solving nonlinear reactive solute transport problem in a 3-D heterogeneous medium. Here the solution of the biodegradation problem involving a single solute by a single class of microorganisms coupled with dynamic microbial growth is attempted using this method. The SFEM here produces a second-order accurate solution for the mean and a first-order accurate solution for the standard deviation of concentrations. In this study both the physical parameters (hydraulic conductivity, porosity, dispersivity and diffusion coefficient) and the biological parameters (maximum substrate utilization rate and the coefficient of cell decay) are considered as spatially varying random fields. A comparison between the MCSM and SFEM for the mean and standard deviation of concentration is made for 1-D and 3-D problem. The effects of heterogeneity on the degradation of substrate and growth of biomass concentrations for a range of variances of input parameters are discussed for both 1-D and 3-D problems.  相似文献   

16.
We present a nonlinear stochastic inverse algorithm that allows conditioning estimates of transient hydraulic heads, fluxes and their associated uncertainty on information about hydraulic conductivity (K) and hydraulic head (h  ) data collected in a randomly heterogeneous confined aquifer. Our algorithm is based on Laplace-transformed recursive finite-element approximations of exact nonlocal first and second conditional stochastic moment equations of transient flow. It makes it possible to estimate jointly spatial variations in natural log-conductivity (Y=lnK)(Y=lnK), the parameters of its underlying variogram, and the variance–covariance of these estimates. Log-conductivity is parameterized geostatistically based on measured values at discrete locations and unknown values at discrete “pilot points”. Whereas prior values of Y at pilot point are obtained by generalized kriging, posterior estimates at pilot points are obtained through a maximum likelihood fit of computed and measured transient heads. These posterior estimates are then projected onto the computational grid by kriging. Optionally, the maximum likelihood function may include a regularization term reflecting prior information about Y. The relative weight assigned to this term is evaluated separately from other model parameters to avoid bias and instability. We illustrate and explore our algorithm by means of a synthetic example involving a pumping well. We find that whereas Y and h can be reproduced quite well with parameters estimated on the basis of zero-order mean flow equations, all model quality criteria identify the second-order results as being superior to zero-order results. Identifying the weight of the regularization term and variogram parameters can be done with much lesser ambiguity based on second- than on zero-order results. A second-order model is required to compute predictive error variances of hydraulic head (and flux) a posteriori. Conditioning the inversion jointly on conductivity and hydraulic head data results in lesser predictive uncertainty than conditioning on conductivity or head data alone.  相似文献   

17.
18.
In this article, we discuss the application of multiscale finite element method (MsFEM) to groundwater flow in heterogeneous porous media. We investigate the ability of MsFEM in qualifying the flow uncertainty. Monte Carlo simulation is employed to implement the stochastic analysis, and MsFEM is used to avoid a full resolution to the spatial variable conductivity field. Large-scale flow with high variability is investigated by inspecting the single realization as well as the probability distribution functions of head and velocity. The numerical results show that the performance of MsFEM depends on the ratio between the correlation length and the coarse element size. An accurate prediction to the velocity requires a much lower ratio than the head. The MsFEM has different convergence rates for the head and the velocity, while the convergence rates do not deteriorate as the variance grows.  相似文献   

19.
Non-local stochastic moment equations are used successfully to analyze groundwater flow in randomly heterogeneous media. Here we present a moment equations-based approach to quantify the uncertainty associated with the estimation of well catchments. Our approach is based on the development of a complete second order formalism which allows obtaining the first statistical moments of the trajectories of conservative solute particles advected in a generally non-uniform groundwater flow. Approximate equations of moments of particles’ trajectories are then derived on the basis of a second order expansion in terms of the standard deviation of the aquifer log hydraulic conductivity. Analytical expressions are then obtained for the predictors of locations of mean stagnation points, together with their associated uncertainties. We implement our approach on heterogeneous media in bounded two-dimensional domains, with and without including the effect of conditioning on hydraulic conductivity information. The impact of domain size, boundary conditions, heterogeneity and non-stationarity of hydraulic conductivity on the prediction of a well catchment is explored. The results are compared against Monte Carlo simulations and semi-analytical solutions available in the literature. The methodology is applicable to both infinite and bounded domains and is free of distributional assumptions (and so applies to both Gaussian and non-Gaussian log hydraulic conductivity fields) and formally includes the effect of conditioning on available information.  相似文献   

20.
We focus on the Bayesian estimation of strongly heterogeneous transmissivity fields conditional on data sampled at a set of locations in an aquifer. Log-transmissivity, Y, is modeled as a stochastic Gaussian process, parameterized through a truncated Karhunen–Loève (KL) expansion. We consider Y fields characterized by a short correlation scale as compared to the size of the observed domain. These systems are associated with a KL decomposition which still requires a high number of parameters, thus hampering the efficiency of the Bayesian estimation of the underlying stochastic field. The distinctive aim of this work is to present an efficient approach for the stochastic inverse modeling of fully saturated groundwater flow in these types of strongly heterogeneous domains. The methodology is grounded on the construction of an optimal sparse KL decomposition which is achieved by retaining only a limited set of modes in the expansion. Mode selection is driven by model selection criteria and is conditional on available data of hydraulic heads and (optionally) Y. Bayesian inversion of the optimal sparse KLE is then inferred using Markov Chain Monte Carlo (MCMC) samplers. As a test bed, we illustrate our approach by way of a suite of computational examples where noisy head and Y values are sampled from a given randomly generated system. Our findings suggest that the proposed methodology yields a globally satisfactory inversion of the stochastic head and Y fields. Comparison of reference values against the corresponding MCMC predictive distributions suggests that observed values are well reproduced in a probabilistic sense. In a few cases, reference values at some unsampled locations (typically far from measurements) are not captured by the posterior probability distributions. In these cases, the quality of the estimation could be improved, e.g., by increasing the number of measurements and/or the threshold for the selection of KL modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号