首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a model for synthesising daily average streamflow data that is suitable for most rivers in Great Britain. The method is based on a linear interpolation of the logorithms of 5-day average flows. The 5-day average flows are produced using N.T. Kottegoda's statistical model (Thesis, Univ. of Birmingham, 1970). The 5-day model preserves the long-term statistical characteristics of the daily data, while the short-term characteristics such as hydrograph shape are imposed by the interpolation method.

A stochastic error term is superimposed on the interpolated daily flows. This term represents the non-deterministic component of the daily time series. The analysis of the observed error terms represents an important part of this paper.

The riverflow in the Severn at Bewdley is used to demonstrate both the analysis of actual data and the generation of synthetic data. The technique is then applied to data from two other rivers with widely differing characteristics to demonstrate the range of the method.  相似文献   


2.
3.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

4.
Among other sources of uncertainties in hydrologic modeling, input uncertainty due to a sparse station network was tested. The authors tested impact of uncertainty in daily precipitation on streamflow forecasts. In order to test the impact, a distributed hydrologic model (PRMS, Precipitation Runoff Modeling System) was used in two hydrologically different basins (Animas basin at Durango, Colorado and Alapaha basin at Statenville, Georgia) to generate ensemble streamflows. The uncertainty in model inputs was characterized using ensembles of daily precipitation, which were designed to preserve spatial and temporal correlations in the precipitation observations. Generated ensemble flows in the two test basins clearly showed fundamental differences in the impact of input uncertainty. The flow ensemble showed wider range in Alapaha basin than the Animas basin. The wider range of streamflow ensembles in Alapaha basin was caused by both greater spatial variance in precipitation and shorter time lags between rainfall and runoff in this rainfall dominated basin. This ensemble streamflow generation framework was also applied to demonstrate example forecasts that could improve traditional ESP (Ensemble Streamflow Prediction) method.  相似文献   

5.
6.
ABSTRACT

Although it is conceptually assumed that global models are relatively ineffective in modelling the highly unstable structure of chaotic hydrologic dynamics, there is not a detailed study of comparing the performances of local and global models in a hydrological context, especially with new emerging machine learning models. In this study, the performance of a local model (k-nearest neighbour, k-nn) and, as global models, several recent machine learning models – artificial neural network (ANN), least square-support vector regression (LS-SVR), random forest (RF), M5 model tree (M5), multivariate adaptive regression splines (MARS) – was analysed in multivariate chaotic forecasting of streamflow. The models were developed for Australia’s largest river, the River Murray. The results indicate that the k-nn model was more successful than the global models in capturing the streamflow dynamics. Furthermore, coupled with the multivariate phase-space, it was shown that the global models can be successfully used for obtaining reliable uncertainty estimates for streamflow.  相似文献   

7.
The purposes of this study are to identify the bias of applying the analysis of a log–log plot of baseflow and to derive an equation to describe successive regional mean baseflow. The function ?dQ/dt = a Qb has been used to describe baseflow in many studies that obtain the values of a and b from the log–log plot. According to analysis in this study, the value of 1 can be assigned to b in two boundary conditions, but the parameter a is proved to be related to the depth of water table and starting time of recession and thus different values of a may be found for different recession events. This paper points out that no single regression line can be obtained by plotting all baseflow data on a log–log diagram. Instead, there should be parallel lines, and each for a recession event. It implies that no single set of parameters a and b can be applied to predict baseflow. Thus, a new equation describing the relationship between three successive mean baseflows was derived in this study. The bias in the analysis of the log–log plot and the ability of the derived equation to predict baseflow were verified for five watersheds in Taiwan. Results indicate that the formula of mean baseflow prediction can provide reasonable estimates of flows with a leading time of 6 days. Furthermore, stream flows of the Tonkawa creek watershed in USA were used to verify that using average flows can result in better predictions than using instantaneous flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58 % of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and 3-h precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions.  相似文献   

9.
10.
ABSTRACT

This paper assesses the possibility of using multi-model averaging techniques for continuous streamflow prediction in ungauged basins. Three hydrological models were calibrated on the Nash-Sutcliffe Efficiency metric and were used as members of four multi-model averaging schemes. Model weights were estimated through optimization on the donor catchments. The averaging methods were tested on 267 catchments in the province of Québec, Canada, in a leave-one-out cross-validation approach. It was found that the best hydrological model was practically always better than the others used individually or in a multi-model framework, thus no averaging scheme performed statistically better than the best single member. It was also found that the robustness and adaptability of the models were highly influential on the models’ performance in cross-verification. The results show that multi-model averaging techniques are not necessarily suited for regionalization applications, and that models selected in such studies must be chosen carefully to be as robust as possible on the study site.
Editor M.C. Acreman; Associate editor S. Grimaldi  相似文献   

11.
This study proposes a new monthly ensemble streamflow prediction (ESP) forecasting system that can update the ESP in the middle of a month to reflect the meteorological and hydrological variations during that month. The reservoir operating policies derived from a sampling stochastic dynamic programming model using ESP scenarios updated three times a month were applied to the Geum River basin to measure the value of updated ESP for 21 years with 100 initial storage combinations. The results clearly demonstrate that updating the ESP scenario improves the accuracy of the forecasts and consequently their operational benefit. This study also proves that the accuracy of the ESP scenario, particularly when high flows occur, has a considerable effect on the reservoir operations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
《水文科学杂志》2012,57(15):1857-1866
ABSTRACT

Daily streamflow forecasting is a challenging and essential task for water resource management. The main goal of this study was to compare the accuracy of five data-driven models: extreme learning machine (basic ELM), extreme learning machine with kernels (ELM-kernel), random forest (RF), back-propagation neural network (BPNN) and support vector machine (SVR). The results show that the ELM-kernel model provided a superior alternative to the other models, and the basic ELM model had the poorest performance. To further evaluate the predictive capacities of the five models, the estimations of low flow and high flow in the testing dataset were compared. The RF model was slightly superior to the other models in predicting the peak flows, and the ELM-kernel model showed the highest prediction precision of low flows. There was no single model that showed obvious advantages over the other models in this study. Therefore, further exploration is required for the hydrological forecasting problems.  相似文献   

13.
A temporal analysis of the number and duration of exceedences of high- and low-flow thresholds was conducted to determine the number of years required to detect a level shift using data from Virginia, North Carolina, and South Carolina. Two methods were used—ordinary least squares assuming a known error variance and generalized least squares without a known error variance. Using ordinary least squares, the mean number of years required to detect a one standard deviation level shift in measures of low-flow variability was 57.2 (28.6 on either side of the break), compared to 40.0 years for measures of high-flow variability. These means become 57.6 and 41.6 when generalized least squares is used. No significant relations between years and elevation or drainage area were detected (P>0.05). Cluster analysis did not suggest geographic patterns in years related to physiography or major hydrologic regions. Referring to the number of observations required to detect a one standard deviation shift as ‘characterizing’ the variability, it appears that at least 20 years of record on either side of a shift may be necessary to adequately characterize high-flow variability. A longer streamflow record (about 30 years on either side) may be required to characterize low-flow variability.  相似文献   

14.
ABSTRACT

The application of artificial neural networks (ANNs) has been widely used recently in streamflow forecasting because of their ?exible mathematical structure. However, several researchers have indicated that using ANNs in streamflow forecasting often produces a timing lag between observed and simulated time series. In addition, ANNs under- or overestimate a number of peak flows. In this paper, we proposed three data-processing techniques to improve ANN prediction and deal with its weaknesses. The Wilson-Hilferty transformation (WH) and two methods of baseflow separation (one parameter digital filter, OPDF, and recursive digital filter, RDF) were coupled with ANNs to build three hybrid models: ANN-WH, ANN-OPDF and ANN-RDF. The network behaviour was quantitatively evaluated by examining the differences between model output and observed variables. The results show that even following the guidelines of the Wilson-Hilferty transformation, which significantly reduces the effect of local variations, it was found that the ANN-WH model has shown no significant improvement of peak flow estimation or of timing error. However, combining baseflow with streamflow and rainfall provides important information to ANN models concerning the flow process operating in the aquifer and the watershed systems. The model produced excellent performance in terms of various statistical indices where timing error was totally eradicated and peak flow estimation significantly improved.
Editor D. Koutsoyiannis; Associate editor Y. Gyasi-Agyei  相似文献   

15.
Wensheng Wang  Jing Ding 《水文研究》2007,21(13):1764-1771
A p‐order multivariate kernel density model based on kernel density theory has been developed for synthetic generation of multivariate variables. It belongs to a kind of data‐driven approach and is able to avoid prior assumptions as to the form of probability distribution (normal or Pearson III) and the form of dependence (linear or non‐linear). The p‐order multivariate kernel density model is a non‐parametric method for synthesis of streamflow. The model is more flexible than conventional parametric models used in stochastic hydrology. The effectiveness and satisfactoriness of this model are illustrated through its application to the simultaneous synthetic generation of daily streamflow from Pingshan station and Yibin‐Pingshan region (Yi‐Ping region) of the Jinsha River in China. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

A rainfall–streamflow model is proposed, in which a downscaled rainfall series and its wavelet-based decomposed sub-series at optimum lags were used as covariates in GAMLSS (Generalized Additive Model in Location, Scale and Shape). GAMLSS is applied in climate change impact assessment using CMIP5 general climate model to simulate daily streamflow in three sub-catchments of the Onkaparinga catchment, South Australia. The Spearman correlation and Nash-Sutcliffe efficiency between the observed and median simulated streamflow values were high and comparable for both the calibration and validation periods for each sub-catchment. We show that the GAMLSS has the capability to capture non-stationarity in the rainfall–streamflow process. It was also observed that the use of wavelet-based decomposed rainfall sub-series with optimum lags as covariates in the GAMLSS model captures the underlying physics of the rainfall–streamflow process. The development and application of an empirical rainfall–streamflow model that can be used to assess the impact of catchment-scale climate change on streamflow is demonstrated.  相似文献   

17.
ABSTRACT

The application of remotely-sensed data for hydrological modeling of the Congo Basin is presented. Satellite-derived data, including TRMM precipitation, are used as inputs to drive the USGS Geospatial Streamflow Model (GeoSFM) to estimate daily river discharge over the basin from 1998 to 2012. Physically-based parameterization was augmented with a spatially-distributed calibration that enables GeoSFM to simulate hydrological processes such as the slowing effect of the Cuvette Centrale. The resulting simulated long-term mean of daily flows and the observed flow at the Kinshasa gauge were comparable (40 631 and 40 638 m3/s respectively), in the 7-year validation period (2004–2010), with no significant bias and a Nash-Sutcliffe model efficiency coefficient of 0.70. Modeled daily flows and aggregated monthly river outflows (compared to historical averages) for additional sites confirm the model reliability in capturing flow timing and seasonality across the basin, but sometimes fails to accurately predict flow magnitude. The results of this model can be useful in research and decision-making contexts and validate the application of satellite-based hydrological models driven for large, data-scarce river systems such as the Congo.  相似文献   

18.
Nonlinear ensemble prediction of chaotic daily rainfall   总被引:3,自引:0,他引:3  
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955–2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on the phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996–2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature.  相似文献   

19.
Statistical methods have been widely used to build different streamflow prediction models; however, lacking of physical mechanism prevents precise streamflow prediction in alpine regions dominated by rainfall, snow and glacier. To improve precision, a new hybrid model (HBNN) integrating HBV hydrological model, Bayesian neural network (BNN) and uncertainty analysis is proposed. In this approach, the HBV is mainly used to generate initial snow-melt and glacier-melt runoffs that are regarded as new inputs of BNN for precision improvement. To examine model reliability, a hybrid deterministic model called HLSSVM incorporating the HBV model and least-square support vector machine is also developed and compared with HBNN in a typical region, the Yarkant River basin in Central Asia. The findings suggest that the HBNN model is a robust streamflow prediction model for alpine regions and capable of combining strengths of both the BNN statistical model and the HBV hydrological model, providing not only more precise streamflow prediction but also more reasonable uncertainty intervals than competitors particularly at high flows. It can be used in predicting streamflow for similar regions worldwide.  相似文献   

20.
ABSTRACT

Combinations of low-frequency components (also known as approximations) resulting from the wavelet decomposition are tested as inputs to an artificial neural network (ANN) in a hybrid approach, and compared to classical ANN models for flow forecasting for 1, 3, 6 and 12 months ahead. In addition, the inputs are rewritten in terms of the flow, revealing what type of information was being provided to the network, in order to understand the effect of the approximations on the forecasting performance. The results show that the hybrid approach improved the accuracy of all tested models, especially for 1, 3 and 6 months ahead. The input analyses show that high-frequency components are more important for shorter forecast horizons, while for longer horizons, they may worsen the model accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号