首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems, and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to have sourced outburst floodwaters that sculpted the outflow channels, and ponded to form various hypothesized oceans, seas, and lakes episodically through time. These floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains. Stratigraphy, geomorphology, and topography record at least one great Noachian-Early Hesperian northern plains ocean, a Late Hesperian sea inset within the margin of the high water marks of the previous ocean, and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis- and Elysium-induced Amazonian flooding.  相似文献   

2.
The crustal dichotomy and the Tharsis rise are the most prominent topographic features on Mars. The dichotomy is largely an expression of different crustal thicknesses in the northern and southern hemispheres, while Tharsis is centered near the equator at the dichotomy boundary. However, the cause for the orientation of the dichotomy and the equatorial location of Tharsis remains poorly understood. Here we show that the crustal thickness variations associated with the dichotomy may have driven true polar wander, establishing the north-south orientation of the dichotomy very early in martian history. Such a reorientation that placed the dichotomy boundary near the equator would also have constrained the Tharsis region on the dichotomy boundary to have originated near the equator. We present a scenario for the early generation and subsequent reorientation of the hemispheric dichotomy, although the reorientation is independent of the formation mechanism. Our results also have implications for the sharply different remanent magnetizations between the two hemispheres.  相似文献   

3.
The concept of block tectonics provides a framework for understanding many aspects of Tharsis and adjoining structures. This Tharsis block tectonics on Mars is manifested partly by mantle-related doming and partly by response to loading by subsequent volcanic construction. Although the origin of the volcanism from beneath Tharsis is a subject of controversy explanations have to include inhomogenities in Martian internal structure, energy distribution, magma accumulation and motion below the lithosphere. Thermal convection can be seen as a necessary consequence for transient initial phase of Martian cooling. This produced part of the elevated topography with tensional stresses and graben systems radial to the main bulge. The linear grabens, radial to the Tharsis center, can be interpreted to indicate rift zones that define the crustal block boundaries. The load-induced stresses may then have contributed on further graben and ridge formation over an extended period of time.On leave from Dept. of Astronomy University of Oulu, Oulu, Finland.  相似文献   

4.
5.
The well-known dichotomy in topography, surface age, and crustal structure between the northern lowlands and the southern uplands of Mars has been explained by both endogenic and exogenic processes. According to the used model this asymmetry might be a result of a certain mechanism of core fommation influencing the following planetary evolution. Therefore it has been assumed that the present internal structure of Mars is characterized by different velocity-depth distributions of the mantle for the northern and southern hemisphere, respectively. For both regions significant differences in travel times of seismic waves were calculated. These results may be important for the future seismic exploration of Mars.  相似文献   

6.
Review of morphologic, morphometric and compositional data from Mars suggests that volcanism in the early Hesperian Syrtis Major edifice was predominantly ultramafic, in contrast to the abundant basaltic volcanism of the Hesperian to Amazonian Tharsis and Elysium provinces. Comparisons of edifice characteristics between Syrtis Major and the large, circum-Hellas Noachian to Hesperian volcanoes suggest that these structures may also be formed by ultramafic volcanic activity. The data suggest that a global scale magma compositional change occurred on Mars during the late Hesperian. The occurrence of widespread ultramafic volcanism suggests that a high degree of partial melting in a relatively hot mantle characterized Mars?? early thermal history, conditions that may be analogous to those that prevailed in the Archean Earth.  相似文献   

7.
Topographic information, surface structures and construction of the Martian Tharsis bulge are used to estimate the previous stresses across the low-lying peripheral margins of the crustal blocks in terms of simple compensation models. Hot mantle activity, crustal roots, isostasy, and late-stage extensive lithosphere thickening together with volcanic building have been in combined response to the high-elevated Tharsis bulge. The initial phases of the Tharsis building have been dominated by the mantle plume doming, followed by extrusional dome raising. The volcanism has been most important bulge building factor only after thickening of the crust. During the initial mantle-generated doming and igneous activity the thin-lithosphere block tectonics has been very important. There has been a compressional peripheral zone around the bulge giving rise to dorsa formation while the high bulge crests have been in tensional state. The situation may be favorable for comparative studies with other planets. We may have something to learn from this block tectonics on the one-plate planet Mars even in respect to the Earth's plate tectonic paradigm.On leave from Dept. of Astronomy, University of Oulu, Finland.  相似文献   

8.
One of the many significant findings of the Mars Global Surveyor mission is the presence of hundreds of quasi-circular depressions (QCDs) observed from high-resolution MOLA topography data. Their presence has recently been interpreted to reflect a northern lowlands that archive some of the earliest recorded rocks on Mars, mostly below a veneer of Hesperian and Amazonian materials. Here we analyze these data, coupled with a recent synthesis of geologic, geophysical, geomorphic, topographic, and magnetic information. Such analysis allows us to suggest a potential plate tectonic phase during the recorded Early into Middle Noachian martian history that transitioned into a monoplate world with episodic magmatic-driven activity persisting to present. This working hypothesis is based on: (1) the observation that the basement of the northern plains is younger than the basement of the southern highlands, but older than the material exposures of the cratered highlands, suggesting different formational ages for each one of the three geologic-time units; (2) the observation that parts of the very ancient highland's crust are highly magnetized, thus suggesting that most if not all of the formation of the lowlands basement postdates the shut off of the martian dynamo, some 4 Gyr ago, and so allowing hundreds of millions of years for the shaping of the buried lowlands. Consequently, the role of endogenic processes in the earliest geological evolution of Mars (Early perhaps into Middle Noachian) requires reconsideration, since MOLA topographic and MGS magnetic data afford a temporal window sufficient for very early, non-primordial shaping of the northern lowlands' basement.  相似文献   

9.
Mariner 9 pictures indicate that the surface of Mars has been shaped by impact, volcanic, tectonic, erosional and depositional activity. The moonlike cratered terrain, identified as the dominant surface unit from the Mariner 6 and 7 flyby data, has proven to be less typical of Mars than previously believed, although extensive in the mid- and high-latitude regions of the southern hemisphere. Martian craters are highly modified but their size-frequency distribution and morphology suggest that most were formed by impact. Circular basins encompassed by rugged terrain and filled with smooth plains material are recognized. These structures, like the craters, are more modified than corresponding features on the Moon and they exercise a less dominant influence on the regional geology. Smooth plains with few visible craters fill the large basins and the floors of larger craters; they also occupy large parts of the northern hemisphere where the plains lap against higher landforms. The middle northern latitudes of Mars from 90 to 150† longitude contain at least four large shield volcanoes each of which is about twice as massive as the largest on Earth. Steep-sided domes with summit craters and large, fresh-appearing volcanic craters with smooth rims are also present in this region. Multiple flow structures, ridges with lobate flanks, chain craters, and sinuous rilles occur in all regions, suggesting widespread volcanism. Evidence for tectonic activity postdating formation of the cratered terrain and some of the plains units is abundant in the equatorial area from 0 to 120° longitude.Some regions exhibit a complex semiradial array of graben that suggest doming and stretching of the surface. Others contain intensity faulted terrain with broader, deeper graben separated by a complex mosaic of flat-topped blocks. An east-west-trending canyon system about 100–200 km wide and about 2500 km long extends through the Coprates-Eos region. The canyons have gullied walls indicative of extensive headward erosion since their initial formation. Regionally depressed areas called chaotic terrain consist of intricately broken and jumbled blocks and appear to result from breaking up and slumping of older geologic units. Compressional features have not been identified in any of the pictures analyzed to data. Plumose light and dark surface markings can be explained by eolian transport. Mariner 9 has thus revealed that Mars is a complex planet with its own distinctive geologic history and that it is less primitive than the Moon.  相似文献   

10.
The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically controlled waterways associated with these features. This hypothesis would explain why these features were not completely destroyed. During the Late Amazonian, high-obliquity conditions may have led to the removal of large volumes of volatiles and sediments being eroded from Planum Boreum, which then may have been re-deposited as thick, circum-polar plains. Transition into low obliquity ∼5 myr ago may have led to progressive destabilization of these materials leading to collapse and pedestal crater formation. Our model does not contraindicate possible large-scale ponding of fluids in the northern lowlands, such as for example the formation of water and/or mud oceans. In fact, it provides a complementary mechanism involving large-scale groundwater discharges within the northern lowlands for the emplacement of fluids and sediments, which could have potentially contributed to the formation of these bodies. Nevertheless, our model would spatially restrict to surrounding parts of the northern plain either the distribution of the oceans or the zones within these where significant sedimentary accumulation would have taken place.  相似文献   

11.
《Planetary and Space Science》1999,47(3-4):411-431
We have constructed the complex geologic history of the Thaumasia region of Mars on the basis of detailed geologic mapping and relative-age dating of rock units and structure. The Thaumasia plateau dominates the region and consists of high lava plains partly surrounded by rugged highlands, mostly of Noachian and Hesperian age. Long-lived faulting centered near Syria Planum and at lesser sites produced radiating narrow grabens during the Noachian through Early Amazonian and concentric wrinkle ridges during the Late Noachian and Early Hesperian. Fault activity peaked during the Noachian and waned substantially during Late Hesperian and Amazonian time. Volcanism on the Thaumasia plateau was particularly active in comparison with other martian cratered highlands, resulting in fourteen volcanoes and numerous outcrops of smooth, ridged, and lobate plains materials. A particularly extensive set of overlapping lava-flow units was emplaced sequentially from Thaumasia Planum to Syria Planum, spanning from the Late Noachian to the Late Hesperian; lobate flows succeeded smooth flow at the beginning of the Late Hesperian. Deep crustal intrusion and a thickened, buoyant crust may have caused the uplift of the plateau during the Noachian and Early Hesperian, resulting in outward-verging fold-and-thrust plateau margins. This structural style appears similar to that of the young ranges of the Rocky Mountains in the western U.S. Within the plateau, several sites of volcanotectonic activity and valley erosion may be underlain by large and perhaps long-lived magmatic intrusions. One such site occurs at the headland of Warrego Valles. Here, at least two episodes of valley dissection from the Noachian to Early Hesperian occurred during the formation of two nearby rift systems. The site also is a locus of intersection for regional narrow grabens during the Late Noachian and Early Hesperian. However, at the site, such faults diverge or terminate, which suggests that a resistant body of rock occurs there. The overall volcanotectonic history at Thaumasia fits into a model for Tharsis as a whole in which long-lived Syria Planum-centered activity is ringed by a few significant, shorter-lived centers of activity like the Thaumasia plateau. Valley formation, like tectonism in the region, peaked during the Noachian and declined substantially during the Hesperian and Amazonian. Temporal and spatial associations of single erosional valleys and valley networks with volcanoes, rift systems, and large impact craters suggest that the majority of valleys formed by hydrothermal, deformational, and seismic-induced processes. The origin of scattered, mainly Noachian valleys is more conjectural; possible explanations include local precipitation, seismic disturbance of aquifers, or unrecognized intrusions.  相似文献   

12.
The origin of the ancient martian crustal dichotomy and the massive magmatic province of Tharsis remains an open problem. Here, we explore numerically a hypothesis for the origin of these two features involving both exogenic and endogenic processes. We propose a giant impact event during the late stage of planetary formation as the source of the southern highland crust. In a second stage, the extraction of excess heat by vigorous mantle convection on the impacted hemisphere leads to massive magmatism, forming a distinct Tharsis-like volcanic region. By coupling short-term and long-term numerical simulations, we are able to investigate both the early formation as well as the 4.5 Gyr evolution of the martian crust. We demonstrate numerically that this exogenic-endogenic hypothesis is in agreement with observational data from Mars.  相似文献   

13.
Folds up to 50 km across have been identified on Arsia Mons aureole. Tharsis Province, Mars. The structures, located on Mars for the first time, are close to Aganippe Fossa and other huge faults which have behaved as left-lateral shear zones and then as extensional features. A tectonic scheme is proposed to explain the folds as shear-induced structures. Folding reveals a layered sequence in the aureole, and that is taken as a definitive evidence for its deposition by ice.If at least some of the Tharsis volcanoes aureoles are basal moraines, their study is critical, as they could contain a record of Mars paleoclimatic fluctuations. Martian past frozen lakes or oceans have been proposed, and some sediments found on the northern plains could have been deposited on the bottom of those basins. If this is so, those formations should be layered sequences and could also bear the traces of tectonic stresses, detectable as folds on Viking imagery. Correlation of these two kinds of evidence seems a promising line to tackle the Martian paleoclimatic problem.  相似文献   

14.
The Alba Patera main graben zone is radial to the Tharsis bulge, indicating the importance of the Tharsis bulge-related peripheral rift tectonics. The concentric grabens around the Alba Patera area are also partly caused by crustal bending due to the central load of the Alba Patera volcano. These two graben sets partly coincide forming composite structures. Both tectonic systems were still active after the last major volcanic lava extrusions took place. After this, the crater chain grabens, radial to the northernmost part of the Tharsis bulge were formed. These collapse craters were evidently caused by the late-tectonic forces due to the northern Tharsis and adjoining lava loads, resulting in flexural tension and activating previous faults.  相似文献   

15.
J.B Plescia 《Icarus》2003,165(2):223-241
Tharsis Tholus is unusual martian shield volcano in that the edifice is cut by a series of large normal faults that appear to penetrate the entire volcano. Northeast-trending narrow graben also cut the flank. The large normal faults may be caused by loading of a ductile subsurface layer allowing failure of the edifice; the narrow graben are typical tensional faults. The flank is heavily mantled by aeolian material. Despite the bulbous appearance, the overall morphology of Tharsis Tholus suggests it is a basaltic shield. Crater counts indicate an age of early Hesperian placing Tharsis Tholus in the middle of the period of activity that built the other small Tharsis volcanoes.  相似文献   

16.
Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis.  相似文献   

17.
Observations of ridge-fault crosscutting relationships on the ridged plains units surrounding the Tharsis region of Mars have led to the development of a classification scheme involving three distinct types of intersections. Ridges crosscut by faults are designated Type C and account for 81% of the observed intersections. Ridges terminated at one end by a fault (Type T), as well as those superposed on grabens (Type S), are less numerous. Interpretation of the morphology of these intersections and the angles of intersection between ridges and faults with radial trends to major topographic features in the Tharsis region have led to the following conclusions: (1) the major ridge forming events in the Tharsis region were roughly coincident with, and in some cases possibly prior to, the extensional events that produced the faulting of the Tempe and Mareotis regions, the Coprates and Memnonia regions, and the rifting of Valles Marinrris; (2) the compressional events that formed most of the ridges are restricted in time both by the irrelationship to regional extensional events and by the age of the units on which they formed. The suggestion that compressional ridges are a result of a single long term viscoelastic response of the lithosphere to loading of the crust is not supported by this study. A model involving one or more isostatically compensated uplifts and subsequent relaxation of the crust after the emplacement of the ridged plains volcanic units is favored.  相似文献   

18.
The nature of strong martian crustal field sources is investigated by mapping and modeling of Mars Global Surveyor magnetometer data near Apollinaris Patera, a previously proposed volcanic source, supplemented by large-scale correlative studies. Regional mapping yields evidence for positive correlations of orbital anomalies with both Apollinaris Patera and Lucus Planum, a nearby probable extrusive pyroclastic flow deposit that is mapped as part of the Medusae Fossae Formation. Iterative forward modeling of the Apollinaris Patera magnetic anomaly assuming a source model consisting of one or more uniformly magnetized near-surface disks indicates that the source is centered approximately on the construct with a scale size several times larger and comparable to that of the Apollinaris Patera free-air gravity anomaly. A significantly lower rms deviation is obtained using a two-disk model that favors a concentration of magnetization near the construct itself. Estimates for the dipole moment per unit area of the Lucus Planum source together with maximum thicknesses of ∼3 km based on topographic and radar sounding data lead to an estimated minimum magnetization intensity of ∼50 A/m within the pyroclastic deposits. Intensities of this magnitude are similar to those obtained experimentally for Fe-rich Mars analog basalts that cooled in an oxidizing (high fO2) environment in the presence of a strong (?10 μT) surface field. Further evidence for the need for an oxidizing environment is provided by a broad spatial correlation of the locations of phyllosilicate exposures identified to date using Mars Express OMEGA data with areas containing strong crustal magnetic fields and valley networks in the Noachian-aged southern highlands. This indicates that the presence of liquid water, which is a major crustal oxidant, was an important factor in the formation of strong magnetic sources. The evidence discussed here for magnetic sources associated with relatively young volcanic units suggests that a martian dynamo existed during the late Noachian/early Hesperian, after the last major basin-forming impacts and the formation of the northern lowlands.  相似文献   

19.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   

20.
The morphology of fluvial valleys on Mars provides insight into surface and subsurface hydrology, as well as to Mars’ past climate. In this study, Naktong Vallis and its tributaries were examined from high-resolution stereoscopic camera (HRSC) images, thermal emission imaging system (THEMIS) daytime IR images, and mars orbiter laser altimeter (MOLA) data. Naktong Vallis is the southern part of a very large fluvial basin composed by Mamers, Scamander, and Naktong Vallis with a total length of 4700 km, and is one of the largest fluvial system on Mars. Naktong Vallis incised along its path a series of smooth intercrater plains. Naktong's main valley cut smooth plains during the Early Hesperian period, estimated ~3.6–3.7 Gyr, implying a young age for the valley when compared to usual Noachian-aged valley networks. Branching valleys located in degraded terrains south of the main Naktong valley have sources inside a large plateau located at more than 2000 m elevation. Connections between these valleys and Naktong Vallis have been erased by the superimposition of late intercrater plains of Early to Late Hesperian age, but it is likely that this plateau represents the main source of water. Small re-incisions of these late plains show that there was at least one local reactivation. In addition, valley heads are often amphitheatre-shaped. Despite the possibility of subsurface flows, the occurrence of many branching valleys upstream of Naktong's main valley indicate that runoff may have played an important role in Naktong Vallis network formation. The importance of erosional landforms in the Naktong Vallis network indicates that fluvial activity was important and not necessarily lower in the Early Hesperian epoch than during the Noachian period. The relationships between overland flows and sapping features suggest a strong link between the two processes, rather than a progressive shift from surface to subsurface flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号