首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A joint surface roughness/volumetric perturbation scattering theory is utilized to characterize bubbly ocean surface reverberation. Backscattering strength predictions are shown to be consistent with observed reverberation phenomena such as critical wind speeds, excess levels due to volumetric scattering, and saturation  相似文献   

2.
Optimal array-processing techniques in the ocean often require knowledge of the spatial coherence of the reverberation. A mathematical model is derived for the reverberation vertical coherence (RVC) in shallow water (SW). A method for analysis of RVC data is introduced. Measured reverberation cross-correlation coefficients as a function of time and frequency, obtained during the Asian Seas International Acoustic Experiment (ASIAEX) in the East China Sea, are reported. SW reverberation from a single shot provides a continuous spatial sampling of the surrounding sound field up to several tens of kilometers and holds valuable information on the geoacoustic properties of the sea floor over this distance. SW reverberation data can, therefore, be used as the basis for a quick and inexpensive method for geoacoustic inversion and has the obvious advantage that acquiring the data in situ requires only a single platform. This paper considers the use of the vertical coherence of the reverberation as the starting point for such an inversion. Sound speed and attenuation in the sea bottom at the ASIAEX site are obtained over a frequency range of 100-1500 Hz by finding values that provide the best match between the measured and predicted RVC.  相似文献   

3.
海洋测深中,海底混响信号是测深仪回波信号检测的主要内容。测深仪通常采用信号的相关处理方法对其进行检测,因此在设计测深仪的回波处理单元时,系统地分析海底混响信号的相关特性就显得尤为重要,对混响信号仿真是分析其特性的有效手段。基于单元散射理论,依据海底散射系数的空间相关半径划分散射单元,给出垂直分置海底混响信号的仿真方法。研究结果表明,该模型物理意义明确,计算简单。仿真得到的海底混响信号具有非常好的空间相关性和时间自相关性,与实测的海底混响信号相符,可用于对混响场特性的分析,改善测深仪的设计,从而有效提高测深仪的测量精度。  相似文献   

4.
An innovative approach to the numerical generation of nonstationery reverberation time series is presented and demonstrated. The computer simulated reverberation time series are of high quality, in that they are accurate representations of those which would result from an actual sonar system (transmit/receive and horizontal/ vertical beampatterns; pulse type, shape, length, and power; frequency and sampling rate), platform (speed and depth), and environment (wind speed and direction, backscattering strengths, and propagation loss). Volume, surface, and/or bottom reverberation as seen by a multiple beam sonar on a moving platform is generated. The approach utilizes recent developments in linear spectral prediction research in which the spectra of stochastic processes are modeled as rational functions and algorithms are used to efficiently compute optimal estimates of coefficients which specify the spectra. A two-fold sequence is formulated; first, the expected reverberation spectra for all beams are predicted and, second, the stochastic time series are generated from the expected spectra. The expected spectra are predicted using a numerical implementation, referred to as the REVSPEC (reverberation spectrum) model, of a general formulation of Faure, Ol'shevskii, and Middleton. Given the spectra, the Levinson-Durbin method is used to solve the Yule-Walker equations of the autoregressive formulation of linear spectral prediction. The numerical implementation of the approach, referred to as the REVSIM (reverberation simulation) model, produces nonstationary coherent multiple-beam reverberation time series. The formulation of the REVSIM model is presented and typical results given. A comparison is made between the simulation outputs of the REVSIM model and those of the REVGEN (reverberation generator) model, a standard well-accepted time series simulation model, to demonstrate the validity of the new approach.  相似文献   

5.
Measurement of ocean surface winds using synthetic aperture radars   总被引:4,自引:0,他引:4  
A methodology for retrieving high-resolution ocean surface wind fields from satellite-borne synthetic aperture radar (SAR) data is introduced and validated. The algorithms developed are suited for ocean SAR data, which were acquired at the C band of either vertical (VV) or horizontal (HH) polarization in transmission and reception. Wind directions are extracted from wind-induced streaks that are visible in SAR images of the ocean at horizontal scales greater than 200 m. These wind streaks are very well aligned with the mean surface wind direction. To extract the orientation of these streaks, two algorithms are introduced, which are applied either in the spatial or spectral domain. Ocean surface wind speeds are derived from the normalized radar cross section (NRCS) and image geometry of the calibrated SAR images, together with the local SAR-retrieved wind direction. Therefore, several C-band models (CMOD IFR2, CMOD4, and CMODS) are available, which were developed for VV polarization, and have to be extended for HH polarization. To compare the different algorithms and C-band models as well as demonstrate their applicability, SAR-retrieved wind fields are compared to numerical-model results considering advanced SAR (ASAR) data from Environmental Satellite (ENVISAT), a European satellite.  相似文献   

6.
A quality database of reverberation is absolutely essential if one is to understand the shallow-water reverberation problem. However, to get wideband reverberation levels (RL) simultaneously for both short and long ranges at low- and mid-frequencies is a delicate task that can be subject to errors. This paper introduces a simple method to get RL for the Asian Sea International Acoustics Experiment in the East China Sea (ASIAEX01). Special attention is paid to the measurements of the RL at short- and mid-ranges. With this method, one does not need to accurately calibrate hydrophones and measurement systems, or to measure absolute source level (SL). It can avoid signal overflow and saturation problems caused by powerful sound sources. The RL (relative to SL) at 1 s (or at 2 s) after an explosive source is detonated is defined as the initial reference reverberation level (IRRL). The IRRLs from four sites with different sandy sediments and different water depths have been given as a function of frequency in the 150-2500 Hz range. A mathematical model gives a physical explanation of the measured IRRL data. The resultant RL and IRRL may offer some reference values for the design of reverberation measurements or numerical simulations of shallow-water reverberation and bottom scattering.  相似文献   

7.
A normal-mode model for calculating reverberation in shallow water is presented. Some illustrative calculations are given for the bistatic case and for vertical and horizontal line-array receivers. Emphasis is on comparison with measurements of bistatic reverberation obtained at a shallow-water area in the Mediterranean. The data are from explosive sources received by a towed array, analyzed in one-tenth-decade frequency bands at subkilohertz frequencies. Model calculations for a flat-bottomed environment indicate a strong dependence on propagation conditions and a weak dependence on beam steering direction. Preliminary comparisons give quite good agreement between measured reverberation and model predictions, but point to the need for extending modeling efforts to handle range-dependent environments  相似文献   

8.
The opportunities of diagnosing wind roughness with the help of underwater vision systems have been investigated. The model of the rough sea surface image observed from under water under conditions of natural illumination has been developed. It has been shown that the statistical processing of the image of a solar path which is formed as a result of light refraction at randomly irregular air-water interface allows one to define not only the slope variance and the curvature variance of the surface, but also the coefficient of spatial correlation of slopes. The algorithms for defining of characteristics of wind roughness on the basis of images of underwater solar path and the results of their testing using the data of numerical and natural experiments are given. It was found that waves of very small amplitude images with high contrast near borders of the Snell’s circle (the underwater image of the sky).  相似文献   

9.
基于SAR图像雨团足印的海面风向提取方法   总被引:1,自引:1,他引:0  
利用地球物理模式函数进行SAR海面风速反演时,需以风向作为地球物理模式函数的输入。本文应用了一种利用SAR图像上雨团足印顺风一侧比逆风一侧明亮的图像特征的海面风向提取方法,以进行海面风速反演。4景RADARSAT-2卫星SAR示例数据风向提取结果相对于ASCAT散射计的风向均方根误差满足不大于16°。分别以本文方法提取的风向和ASCAT散射计风向作为输入,利用地球物理模式函数CMOD5进行海面风速的SAR反演,两者的风速反演结果基本一致,其均方根误差差值不超过0.3 m/s。本文利用SAR图像雨团足印信息的风向提取方法准确可靠,可应用于SAR海面风速反演。  相似文献   

10.
全极化合成孔径雷达近岸风场反演研究   总被引:2,自引:2,他引:0  
Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval.  相似文献   

11.
星载SAR对雨团催生海面风场的观测研究   总被引:2,自引:1,他引:1  
雨团或对流雨是热带与亚热带地区的主要降雨形式,较易被高分辨率星载合成孔径雷达(SAR)探测到。SAR图像上的雨团足印是由大气中雨滴的散射与吸收、下沉气流等共同导致形成的。本文以RADARSAT-2卫星100 m分辨率的SAR图像上雨团引起的海面风场及其结构反演与解译作为实例进行分析。使用CMOD4地球物理模式函数,分别以NCEP再分析数据、欧洲MetOp-A卫星先进散射计(ASCAT)和中国HY-2卫星微波散射计的风向为外部风向,进行了SAR图像的海面风场反演。反演的海面风速相对于NCEP、ASCAT和HY-2的均方根误差(RMSE)分别为1.48 m/s,1.64 m/s和2.14 m/s。SAR图像上一侧明亮另一侧昏暗的圆形信号图斑被解译为雨团携带的下沉气流对海面风场(海面粗糙度)的改变所致。平行于海面背景风场其通过雨团圆形足印中心的剖面上的风速变化可拟合为正弦或余弦曲线,其拟合线性相关系数均不低于0.80。背景风场的风速大小、雨团引起的风速大小以及雨团足印的直径可利用拟合曲线获得,雨团足印的直径大小一般为数千米或数十千米,本文的8例个例解译与分析均验证了该结论。  相似文献   

12.
Detection in the presence of reverberation is often difficult in active sonar, due to the reflection/diffusion/diffraction of the transmitted signal by the ocean surface, ground, and volume. A modelization of reverberation is often used to improve detection because classical algorithms are inefficient. A commonly used reverberation model is colored and nonstationary noise. This model leads to elaborate detection algorithms which normalize and whiten reverberation. In this paper, we focus on a more deterministic model which considers reverberation as a sum of echoes issued from the transmitted signal. The Principal Component Inverse (PCI) algorithm is used with this model to estimate and delete the reverberation echoes. A rank analysis of the observation matrix shows that PCI is efficient in this configuration under some conditions, such as when the transmitted signal is Frequency Modulated. Both methods are validated with real sonar surface reverberation noise. We show that whitening has poor performance when reverberation and target echo have the same properties, while PCI maintains the same performance whatever the reverberation characteristics. Further, we extend the algorithms to spatio-temporal data. We propose a new algorithm for PCI which allows better echo separation. This new method is shown to be more efficient on real spatio-temporal data  相似文献   

13.
Active sonar systems have recently been developed using larger arrays and broad-band sources to counter the detrimental effects of reverberation in shallow-water operational areas. Increasing array size and transmit waveform bandwidth improve the signal-to-noise ratio-and-reverberation power ratio (SNR) after matched filtering and beamforming by reducing the size of the range-bearing resolution cell and, thus, decreasing reverberation power levels. This can also have the adverse effect of increasing the tails of the probability density function (pdf) of the reverberation envelope, resulting in an increase in the probability of a false alarm. Using a recently developed model relating the number of scatterers in a resolution cell to a K-distributed reverberation envelope, the effect of increasing bandwidth (i.e., reducing the resolution cell size) on detection performance is examined for additive nonfluctuating and fluctuating target models. The probability of detection for the two target models is seen to be well approximated by that for a shifted gamma variate with matching moments. The approximations are then used to obtain the SNR required to meet a probability of detection and false-alarm performance specification (i.e., the detection threshold). The required SNR is then used to determine that, as long as the target and scatterers are not over-resolved, decreasing the size of the resolution cell always results in an improvement in performance. Thus, the increase in SNR obtained by increasing bandwidth outweighs the accompanying increase in false alarms resulting from heavier reverberation distribution tails for K-distributed reverberation. The amount of improvement is then quantified by the signal excess, which is seen to be as low as one decibel per doubling of bandwidth when the reverberation is severely non-Rayleigh, as opposed to the expected 3-dB gain when the reverberation is Rayleigh distributed.  相似文献   

14.
An adaptive joint process structure is described which rejects under-ice reverberation by taking advantage of the spatial separation between acoustic backscatter returning from small elevation angles and transmitted energy reflected off the sea surface.  相似文献   

15.
The small-scale roughness of the sea surface acts as an important link in air-sea interaction processes. Radar and sonar waves are scattered by short surface waves providing the basis for remote sensing methods of the sea surface. At high wind speeds, breaking waves occur. Bubbles penetrate into the water and drastically increase acoustical reverberation, transmission loss and ambient noise. Thus, the development of short waves and wave breaking have to be known to apply radar remote sensing to the surface and to deduce from radar backscatter which sonar conditions prevail. To measure the wind dependence of short waves an experimental device was constructed for use from stationary platforms. It is nearly all-weather capable and can easily be handled by a crane. On the other hand, frequencies of short waves measured in a fixed position are extremely frequency shifted by currents. This limits the usefulness of tower-based measurements, e.g., the short wave modulation by wind and waves or currents can only be estimated in a rough approximation. Consequently, a buoy was developed to reduce the frequency shifts. The principle of the buoy is to drift in the local surface current and to follow the amplitudes of long waves. Therefore, short waves are measured in facets of long waves and the Doppler shifts are minimized. The wind is measured at a constant height above the long wave profile and relative to the moving facets. The paper describes the conventional measuring device and points out the necessity of the drifting buoy system. Examples of wind and wave spectra are presented and short wave modulations by long waves are depicted, too. From these measurements, new insights in short wave behaviour have to be expected  相似文献   

16.
苏翔  李超 《海洋通报》2020,39(5):548-557
近海风速预报在沿海防灾减灾、航运安全、风能评估等方面具有重要应用。本文基于欧洲中期天气预报中心数值预报 (ECMWF) 数据,将最优 TS 评分 (OTS) 与频率匹配 (FMM) 两种方法应用于江苏近海风速预报订正,对比了两种订正 方法的优缺点,分析了不同时间训练样本量以及空间站点观测资料数量对订正效果的影响。结果表明:在相同长度的训练期下,风速等级越小,时间训练期样本越多,预报订正值越稳定;对于 7 级以上高风速等级的预报,OTS 与 FMM 的 TS 评分差异不大, 但 FMM 订正更加稳定且频率偏差 (BIAS) 更接近 1;扩充站点观测资料可有效提升预报订正性能;对于 7 级以上灾害性大风,最佳的订正方案是采用 FMM 方法结合全年时间训练样本和扩充的站点观测资料。此外,本文还对比了不同风速情形下,订正前后 BIAS 和 TS 评分对于时间训练样本量、空间站点观测数量以及订正方法 (OTS 和 FMM) 的敏感性的相对大小。  相似文献   

17.
A methodology for acoustic seafloor classification   总被引:3,自引:0,他引:3  
A seafloor classification methodology, based on a parameterization of the reverberation probability density function in conjunction with neural network classifiers, is evaluated through computer simulations. Different seafloor provides are represented by a number of scatterer distributions exhibiting various degrees of departure from the nominal Poisson distribution. Using a computer simulation program, these distributions were insonified at different spatial scales by varying the transmitted pulse length. The statistical signature obtained consists of reverberation kurtosis estimates as a function of pulse length. Two neural network classifiers are presented with the task of discriminating among the various scatterer distributions based on obtained acoustic signatures. The results indicate that this approach offers considerable promise for practical, realizable solutions to the problem of remote seafloor classification  相似文献   

18.
19.
The displacement of a sonar array can be estimated accurately using the correlation of bottom reverberation signals, at successive sweeps. This is the principle of the pulsed correlation log. In this paper, the conditions and accuracy of array horizontal translation estimation are analyzed. The case of a three-dimensional array is considered first, to show that in this case arbitrary translation and rotation can be estimated. The case of a plane array is then analyzed and it is shown that such an array allows estimation of horizontal translation. The derivation relies on modeling the space-time correlation function of bottom reverberation, which is assumed isotropic. Both directive and omnidirectional transmissions are considered. Accuracy of displacement estimates are derived, showing the influence of wavelength, grazing angle, bandwidth, number of overlapping hydrophones, and reverberation-to-noise ratio  相似文献   

20.
Determinations of bottom scattering strength in the decade below 1 kHz under downward refracting conditions have been made using acoustic reverberation and transmission data from the 2001 East China Sea Asian Seas International Acoustic Experiment (ASIAEX). The measurements were performed using explosive sources and receiving hydrophones in ship-suspended vertical-line arrays. The focus of this paper has been the dependence of bottom scattering strength on the frequency and characterization of the uncertainties associated with the extraction of scattering strength from reverberation. The derived bottom scattering strength gradually rises with frequency from 100-300 Hz and then more rapidly above 300 Hz. A potential explanation suggests that the frequency variation results from two scattering mechanisms, rough layer scattering at the low end of the band and sediment near-surface volume scattering at the high end. The spatial extrapolation of these results is explored by comparing them with similarly derived scattering strengths using data obtained under the Navy's Harsh Environments Program at a somewhat separated site (56 km) under environmental conditions similar to those during ASIAEX. In the ASIAEX analysis, it has been found that the largest source of uncertainty in the scattering-strength frequency dependence arises from persistence of finite-amplitude effects associated with the source signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号