首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the design of linear airgun arrays the interaction between the airguns is usually neglected. We review the different formulae which have been proposed for the minimum separation between airguns at which the interaction is negligible. These formulae can all be approximated by a linear function of a single variable. We have analyzed a large number of measurements in order to establish the amount of interaction between two airguns of various volumes at different pressures and depths. The resulting far-field signature has been measured and compared with the sum of the signatures from the two airguns measured in the same experimental situation. The changes in primary pulse amplitude, bubble period and primary/bubble peak-to-peak amplitude ratio were computed from the measurement data as a function of airgun separation, chamber volume, chamber pressure and airgun depth. The influence of a waveshape kit was investigated, and the effects of interaction and the effects of using a waveshape kit were compared.  相似文献   

2.
During the last few years many airgun arrays have been designed with the objective of generating a short signature of high amplitude. For linear arrays of non-interacting airguns two rules have been derived that may help in the design or evaluation of airgun arrays. To achieve a short pressure pulse, the total available air volume has to be distributed over the individual guns in such a way that the tail of the signal, owing to the added bubble signals, becomes as flat as possible. When we think of ordering airguns according to volume, this flat signal tail can be achieved by designing the volumes such that the difference in bubble times of two adjacent guns is proportional to their volume to the power 2/3. The amplitude expected from a linear array of non-interacting airguns is limited by the physical length of the array. A graph of measured values tends to confirm this relation. No relation has been found between the total volume of an array and its amplitude. The graph also detects inefficient use of available array length of existing arrays.  相似文献   

3.
Experiments in an 850 litre water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu.in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5°C and 45°C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modelling of airguns with chamber volumes of 1.6 and 40 cu.in. was performed. In the modelling the same behaviour of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.  相似文献   

4.
Recently the author developed and demonstrated (Safar 1980) an efficient method for operating the airgun. The method involves the generation of a short seismic pulse from the pressure bubble pulses radiated by an airgun when fired several times at the same optimum depth but with different chamber pressures. The purpose of this paper is to present and discuss the test results obtained when implementing the same method using a two-dimensional airgun array. The array consists of seven 0.65 liter airguns fired simultaneously at the same depth but with different chamber pressures. It is shown that the far-field pressure pulse radiated by the seven 0.65 liter airgun array is similar to that radiated by the Flexichoc seismic source. It is concluded that the proposed airgun array can be used as a subarray to form an extremely powerful super-long array suitable for deep seismic exploration. The author would like to thank the Chairman and Board of Directors of the British Petroleum Co. Ltd for permission to publish this paper. Thanks are also due to Mike Symes and Lovell Cox for carrying out the field tests and Seismograph Service (England) Ltd for providing the airguns.  相似文献   

5.
The far-field signatures from a comprehensive and systematic airgun pulse test have been analyzed. Empirical relations between the characteristic signature parameters and depth (5–12 m), pressure (100–137 bar = 10–13.7 MPa) and total chamber volume (0.65–9.5 l) have been derived. Also, the influence of using waveshape kits in different positions within the chamber has been tested. The results indicate that:
  • 1 The amplitude is proportional to chamber pressure to the power 3/4.
  • 2 The bubble period is nearly independent of the position of the waveshape plate.
  • 3 The increase in primary/bubble amplitude ratio is inversely proportional to the chamber volume above the waveshape plate.
  • 4 The amplitude is independent of airgun depth.
Suggestions and comments regarding this work from Dr B. Ursin and Dr A. Ziolkowski are appreciated. The field work was supported by the Norwegian Petroleum Directorate through the Continental Shelf Project at the Seismological Observatory, University of Bergen. An airgun allowing for continuous variation of the chamber volumes was supplied by GECO (Geophysical Company of Norway). The purchase of two airguns was financed by Norske Getty Exploration A/S.  相似文献   

6.
Models that simulate the signature of single airguns form the basis for modelingthe signals of airgun arrays. Most of the existing models assume that the air inside theproduced bubble is ideal gas, which may lead to errors because of the high operating pressureof the airguns. In this study, we propose a model that precisely simulates the signals of singleairguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We alsoconsider a thermodynamically open quasistatic system, the heat transition between waterand gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface.Modeling experiments show that (1) the energy of the source increases and the signal-to-noise ratio of the signature wavelet decreases with increasing seawater temperature, (2) thereflection coefficient of the sea surface under the actual state and depth of the source affectsthe notch caused by the surface reflection, (3) the computed signature with the proposedmodel is very close to the actual data, and (4) the proposed model accurately simulates thesignature of sinale air~uns.  相似文献   

7.
The use of arrays to separate primary reflections from unwanted coherent seismic events is common practice in land seismic surveys. Very long source and receiver arrays have been used recently to reduce the effects of waterbottom multiples on marine seismic data. The source array consists of five uniformly spaced identical subarrays, each with five different airguns, where the distance between the subarrays may vary from 20 m56 m. The volume of each subarray is 10.3 1 (630 cu.in.) which gives a total volume of the array of 51.5 1 (3150 cu.in.) operated at a pressure of 14 MPa (2000 psi). In order to have a flexible receiver system it was decided to implement the extended receiver array in data processing by computing a weighted sum of two to five traces. The hydrophone cable consists of fifty-four channels with a group length of 50 m. Data shot with the superlong airgun array are processed by a combination of standard techniques and special procedures. In particular, the quality of the stack section is improved by using a weighted stack. The stack weights are computed by a program which takes into account the primary-to-multiple ratio. Comparisons with conventional data show significant improvements in data quality obtained by using the superlong airgun array. Examples show that the waterbottom multiples have been strongly attenuated and the deep seismic events have been enhanced. The combined array response function for dipping events is given in an appendix.  相似文献   

8.
This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large‐scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6–9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake‐resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide‐angle reflection and refraction profile formed by 100 short‐period seismometers with the maximum source‐receiver offset of 206 km. The seismic wave signature at these long‐offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000–2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi‐layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry.  相似文献   

9.
Large volume airgun arrays have been widely used in exploring and monitoring underground structures for nearly a decade. Nowadays, large volume airgun arrays adopt the synchronous excitation mode, and source characteristics are controlled by the source signal of a single airgun, which to some extent limits its application. In order to realize the asynchronous excitation of the airgun array, we developed a new firing system for the airgun array, and carried out a field experiment in the Binchuan Fixed Airgun Signal Transmission station to study the influences of the asynchronous excitation on the source signal. The experimental results show that:the newly developed airgun array firing system can ignite the airguns according to the setting time series with high precision. By designing the excitation time series, the asynchronous excitation can enhance the energy of airgun source signal at 3-5Hz, and reduce the energy of pressure pulse wave at 6-18Hz. The signal detection capability of the asynchronous excitation with time series mode is equivalent to the synchronous excitation.  相似文献   

10.
A commercial marine seismic survey has been completed with the wavefield from the n-element (single guns and clusters) airgun array measured for every shot using an array of n + 2 near-field hydrophones, n of which were required to determine the source wavefield, the remaining two providing a check on the computation. The source wavefield is critical to the determination of the seismic wavelet for the extraction of reflection coefficients from seismic reflection data and for tying the data to wells. The wavefield generated by the full array of interacting airguns can be considered to be the superposition of n spherical pressure waves, or notional source signatures, the n hydrophone measurements providing a set of n simultaneous equations for each shot. The solution of the equations for the notional source signatures requires three ingredients: the geometry of the gun ports and near-field hydrophones; the sensitivity of each hydrophone recording channel; and the relative motion between the near-field hydrophones and the bubbles emitted by the guns. The geometry was measured on the back deck using a tape measure. A calibration data set was obtained at the approach to each line, in which each gun was fired on its own and the resulting wavefield was measured with the near-field hydrophones and recorded. The channel sensitivities, or conversion from pressure at the hydrophones to numbers on the tape, were found for each near-field hydrophone channel using the single gun calibration data, the measured geometry, and the peak pressure from each gun, known from the manufacturer’s calibration. The relative motion between the guns and hydrophones was obtained from the same calibration data set by minimizing the energy in the computed notional source signatures at the guns which did not fire. The full array data were then solved for the notional source signatures, and the pressure was computed at the two spare hydrophones and compared with the actual recordings. The rms errors were 5.3% and 2.8% and would have been smaller if the hydrophone channel sensitivities had been properly calibrated beforehand and if the movement of the guns with respect to the hydrophones had been more restricted. This comparison of the predicted and measured signatures at spare hydrophones can, in principle, be done on every shot and we recommend that this be implemented as a standard quality control procedure whenever it is desired to measure the wavefield of a marine seismic source.  相似文献   

11.
A comparison between airguns and explosives as wide-angle seismic sources   总被引:1,自引:1,他引:0  
The relative merits of a 48-gun, 9324 cu. in. (153 litre) airgun array and a 200 kg explosive source are considered for the purposes of long-range (0–400 km) refraction seismic work, with particular reference to traveltime modelling. Theoretical source calculations indicate that in the frequency range 2.5–12.0 Hz, the airgun source will produce an RMS pressure ∼ 8% of that produced by the explosive source and an initial burst pressure ∼17% of that produced by the explosive source. Observed data support these calculations at short ranges and illustrate the greater attenuation of the airgun signal with range due to its lack of very low frequency (< 5 Hz) content. At short offsets, the airgun array provides a preferable seismic source to the explosives, due to densely spaced shots and a consistent waveform resulting in excellent trace-to-trace coherence. With increasing offsets, it may be necessary to stack the airgun data to enhance its signal-to-noise ratio: here we use a 4-fold stack. Large explosive shots, although more powerful, produce a less consistent waveform and are more widely spaced due to operational constraints. The offset at which airguns provide a preferable source is dependent on the ambient noise. This practical comparison of real sources demonstrates that, even without advanced processing, a well-tuned airgun array may provide a preferable source to explosives at offsets up to 160 km, under favourable experimental conditions.  相似文献   

12.
不同激发环境下井中气枪震源特征研究   总被引:2,自引:2,他引:0  
基于单枪容量为250in3的BHS-2200LL井中气枪,在内径0.2、5.0m不同激发井中开展了气枪震源特征对比分析,研究表明:①5.0m井中气枪激发产生的信号优势频率集中在10~40Hz,比在0.2m井中的低,这主要是由于较大水体利于气泡的震荡;②在能量方面,5.0m井中激发信号的能量强于0.2m井中的,幅度上相差1个数量级,单次激发的传播距离可达9km;③2种激发环境下产生的气枪信号都具有较好的重复性。  相似文献   

13.
The article provides a theoretical basis for the extension of the method of scaling law deconvolution to three dimensions using airgun arrays as a sound source. Earlier papers by the author required the dimensions of the scaled sources to be different while the depths and firing pressures were maintained the same in order to preserve the same dynamics of the scaled sources at scaled time. However, this forces the source ghost to be considered as part of the impulse response of the earth rather than as part of the downgoing source wave. And, in fact, the dynamics of the scaled sources are not the same at the same depth because the ghost reflection modulates the behaviour of the oscillating bubbles generated by the airguns, and this modulation does not scale. To force the sources to scale properly, including the ghost interaction, the larger source must be put at greater depth, where hydrostatic pressure is greater, and the initial firing pressure must be adjusted accordingly. Thus, the depth, initial firing pressure and gun volume are all variables. The interaction among guns in scaled airgun arrays also scales exactly if the geometry of an array and the depth of its deployment are scaled by the same factor.  相似文献   

14.
利用固定台站分析长江激发气枪信号特征   总被引:1,自引:1,他引:0  
“地学长江计划”安徽实验是以气枪震源为核心的大型主动源探测实验。通过在长江安徽段20个固定点定点激发气枪震源,结合109个固定台站、11条流动测线组成的观测网络,首次利用主动源实现了对长江流域安徽段约6万km2面积的三维地下结构探测。本文利用固定台站对长江激发气枪信号进行了分析,结果表明,长江中气枪信号激发效果良好,固定台记录中气枪信号可识别的最远距离达300km。对气枪信号绝对振幅的研究结果表明:① 50km处的气枪信号约为10nm量级,200km处的气枪信号小于1 nm;② 气枪信号强度的空间分布存在一定的方位各向异性,可能与长江的几何形状有关;③ 台站背景噪声对于提取气枪信号至关重要,高质量的固定台网为识别nm量级气枪信号提供了可能。  相似文献   

15.
High-speed photography has been used visually to study the shape, surface, turbulence and behaviour of an underwater oscillating bubble generated by an airgun. The source was a BOLT airgun with a chamber volume of 1.6cu.in., placed in a 0.85m3 tank at 0.5m depth. Near-field signatures were also recorded in order to compare the instant photographs of the oscillating bubble with the pressure field recorded about 25 cm from the gun. Estimations of the bubble-wall velocity and bubble radius estimated from high-speed film sequences are also presented, and are compared with modelled results. The deviation between the modelled and measured bubble radii was at most 9%. In order to check the capacity for transmission of light through the bubble, a concentrated laser beam was used as illumination. We found that the air bubble is a strong scattering medium of laser light, hence the bubble is opaque.  相似文献   

16.
Three methods for estimation of the pressure wavefield generated by a marine airgun array are tested experimentally and compared. In the trial a variety of radiation angles and array configurations were used and some large synchronization errors were deliberately introduced. The source was equipped with near-field hydrophones and a subsource ministreamer. A tethered far-field hydrophone was used so that the three estimated far-field signatures could be compared with an independent measurement. The knowledge of the source signature is important for on-board source array QC, deconvolution, multiple attenuation, stratigraphic trap prediction, modelling and inversion, AVO analysis and reservoir monitoring. The methods perform very well and give estimates whose frequency-domain spectra match the measured spectra to within a few dB and within a few tens of degrees of phase over the tested bandwidth of 3.5–110 Hz. The time-domain error-energy is typically only a few per cent of the signal energy for radiation angles within about 30° of the vertical. The third method proved to be sensitive to an experimental shortcoming leading to overloading of the ministreamer and meaningful comparison was not possible for some test configurations.  相似文献   

17.
水库气枪震源产生的S波及其分裂   总被引:7,自引:0,他引:7       下载免费PDF全文
人工气枪震源在陆地水库可以有效激发S波,S波能量较强,与ML1.6天然地震相当。气枪可用于S波分裂研究,对布置在燕山隆起带的流动地震台的气枪信号进行了S波分裂参数分析,结果表明,快剪切波偏振优势方向为NWW和NNE向,偏振方向和断裂的性质密切相关。气枪是高度可重复性人工震源,利用气枪定点激发和定点接收有可能精确获取S波分裂参数随时间的变化规律,为地震预测探索实践提供可靠的物理途径  相似文献   

18.
Source strength of an airgun array may be increased by:
  • — utilizing higher pressure,
  • — increasing total array volume,
  • — employing more guns,
  • — improving gun efficiency.
One measure of gun efficiency is “specific source strength”, Pa*, defined as source strength per unit quantity of air used. Typical units are MPa m/l. Most developments are directed toward increasing gun pressure and/or gun volume to increase source strength of the array. These efforts require that more air compressors be installed onboard the ship. Consequently, a larger ship may be needed for the additional compressors, guns, and auxiliary equipment. A development program was initiated in 1976 to increase source strength of the array without using a larger ship. New guns were designed and built—one for 41.4 MPa and 7.37 liter (6000 p.s.i./450 in3) operation and another with 13.8 MPa and 4.92 liter (2000 p.s.i./300 in3) capability. Experiments were conducted with these new guns (and existing guns) over a range of pressures from 13.8 to 41.4 MPa (2000 to 6000 p.s.i.). Design of the new guns was aided by a mathematical model. The model relates physical dimensions of the airgun to acoustic pressure in the water. It consists of four nonlinear differential equations relating
  • — shuttle motion,
  • — bubble pressure,
  • — chamber pressure,
  • — bubble radius.
The last equation is the “free-bubble-oscillation equation” and represents the ideal case of a pressurized bubble released instantaneously in water. The three other equations modify this ideal case; the four equations together model an airgun of the type manufactured by Bolt Associates, Inc.  相似文献   

19.
In recent years considerable work has been done to devise a satisfactory non-dynamite seismic system that would replace dynamite in offshore areas. Prior to the advent of digital recording and processing, the non-dynamite sources have generally not provided the depth of penetration or the resolution required for satisfactory seismic interpretation. More recent developments in non-dynamite offshore marine sources include adaptation of the Vibroseis from a land unit to a marine unit, and adaptation of the Dinoseis unit from a land to a marine unit. The SUE (Seismic Underwater Explorer) system is a thermodynamic non-dynamite source utilizing a mixture of propane and oxygen detonated in a special chamber approximately 15 feet below the water surface. This source gives penetration to more than 4 sec in areas typified by Gulf of Mexico type geology and shows deeper penetration than had previously been obtained by dynamite along the western United States in areas with 20 lb charge limitations. A pneumatic source, the airgun, has been in production use in the United States since June 1966. This non-dynamite source provides an intriguing amount of versatility and can be expanded to provide additional energy as necessary to obtain the penetration desired. Tests using systems comprised of from eight to twenty-three airguns show penetration in excess of 5 seconds in many areas. Power spectra comparisons both in amplitude and frequency content demonstrate that this is a controlled source generating a controlled seismic wavelet and a controlled frequency spectrum that can be tailored to fit requirements of particular areas. Sample sections obtained in the Gulf of Mexico and the Pacific Ocean offshore California show adequate penetration to 5.0 seconds reflection time. Quantitative measurements with the airguns demonstrate the effect of:
  • 1 Variation of the number of guns in the system;
  • 2 Shaping the frequency spectrum by using different sizes of airguns in the system;
  • 3 Effects on signal-to-noise ratios as a result of stacking several small energy sources together;
  • 4 Reproducibility of the initial pulse wavelet from shot to shot.
The improvement in record quality as a result of advanced digital processing with non-dynamite sources is comparable to that obtained with dynamite sources. Non-dynamite sources make additional improvements possible where high source multiplicity is advantageous. Excellent dynamic correlations yield accurate velocity control as well as definitions of apparent velocities attributable to multiples and primary-to-multiple amplitude relationships. Non-dynamite sources are being used more and more extensively in offshore exploration. The advent of digital recording and processing provides a means for improving depth of penetration and resolution of many non-dynamite sources.  相似文献   

20.
The success of signature deconvolution in optimizing both signal-to-noise ratio and time resolution in the seismic section depends critically upon obtaining an accurate estimate of the far-field source signature. Various deterministic estimation schemes have been proposed in recent years, most of which involve direct monitoring of source output within the water layer. As an alternative to elaborate and error-prone source monitoring schemes during data acquisition, a simple modification to any source array permits subsequent estimation of far-field signatures directly from reflected signal. The new method requires the inclusion within any chosen source array of a simple point source, the “reference” source. Initial experiments employed a water gun as the reference source, characterized by a concise implosive signature with peak-to-peak amplitude of approximately 2 bar·m within the seismic sprectrum. In operation the reference source is fired shortly before the main array (typically 2 s during initial trials) and the usual record length is extended by a similar amount. Each recorded trace then comprises two results: the subsurface response to the reference source signal followed by the response of the same subsurface to the main array. The disparities in source amplitudes and NMO differentials ensure that interference effects are negligible in the main recording. Time- or frequency-domain methods can be employed to extract the main array signature from the dual dataset or to invert this to some preferred wavelet simultaneously. As an additional benefit the reference source yields excellent high-resolution profiles of the shallow geology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号