首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most important problems in applied geophysics is to extract velocities of compressional and shear waves, using the observed data collected at the Earth's surface or in boreholes. Unfortunately, in a typical seismic experiment, we do not have enough information to uniquely recover seismic velocities as functions ofx, y, andz. Thus, in the paper, a simplified model of the Earth (a stack of horizontal homogeneous layers) is considered and a critical discussion of modern techniques for processing reflection arrivals is presented.  相似文献   

2.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

3.
A knowledge of seismic wave velocities in the sedimentary cover is of great importance for interpreting reflection and refraction seismic data, deep seismic soundings and regional and global seismic tomography. This is particularly true for regions characterized by significant thicknesses and a complex sedimentary cover structure. This paper presents the results of an analysis of seismic P-wave velocities in the sedimentary cover of Poland, a complex area of juxtaposition of major tectonic units: the Precambrian East European Craton, the Palaeozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains. Based on vertical seismic profiling data from 1188 boreholes, the dependence of velocity versus depth was determined for regional geological units and for successions from the Tertiary and Quaternary to the Cambrian. The data have been approximated by polynomials, and velocity-depth formulas are given down to 6000 m depth. The velocities in the sedimentary cover have been compared with those from other areas in Europe.  相似文献   

4.
From seismic surveys zero offset reflection times and root-mean-square velocities are obtained. By use of Dix-Krey's formula, the interval velocities can be calculated. If no well velocity survey exists, the interval velocities and T(o) times are the only available information. The suggested way to get a regionally valid velocity distribution is to select N“leading horizons”, where a major change in the velocity parameters occurs and to compute the parameters of the selected velocity depth function (in most cases linear increase with depth) by a special approximation for the interval between two adjacent “leading horizons”. Herewith all reflection horizons within the interval are taken into account.  相似文献   

5.
Physical property measurements were integrated with mineralogical analyses to better understand the nature of the seismic reflectivity of the deepest (>3.5 km depth) gold ore body (Carbon Leader Reef). The CLR lies at depths between 3.5 km and 4.5 km below the surface. Over 50 drill-core samples were selected for geochemical analyses, density and seismic velocity measurements. Ultrasonic measurements were conducted at ambient and elevated stresses, using transducers operating at 0.5 MHz. The study reveals that P-wave velocities generally increase with increasing bulk density. The CLR conglomerate, the gold-bearing reef, has slightly higher P-wave velocity (~5070–5468 m/s) and density values (~2.78 g/cm3) amongst the quartzitic units, possibly due to its massive pyrite content. The quartzite hangingwall and footwall rocks to the CLR exhibit similar P-wave velocity (~5028–5480 and ~4777–5211 m/s, respectively) and density values (~2.68 and 2.66 g/cm3, respectively). The reflection coefficients calculated at the interface between the CLR conglomerate and its hangingwall and footwall units range between ~0.02 and 0.05 which is below the required minimum reflection coefficient value of 0.06 to produce a strong reflection between two lithological boundaries. This suggests that seismic reflection methods might not be able to directly image the CLR, as observed from its poor reflectivity in the 3D seismic data. Samples were also subjected to stresses of up to 65 MPa to simulate in situ-like conditions and to investigate the dependence of seismic velocities on applied stresses. P-wave velocities increase with progressive loading, but at different rates in shale and quartzite rocks as a result of the presence of micro-defects.  相似文献   

6.
Ultrahigh-pressure (UHP) eclogites often show strong plastic deformation and anisotropy of seismic properties. We report in this paper the seismic velocity and anisotropy of eclogite calculated from the crystallographic preferred orientations (CPOs) of constituent minerals (garnet, omphacite, quartz and rutile) and single crystal elastic properties. We also compared the calculated results with the measured results in similar eclogites. Our results suggest that (1) Except that garnet is a seismically quasi-isotropic mineral, omphacite, quartz, coesite and rutile all have strong seismic anisotropies (AVp = 23.0%―40.9%, Max. AVs = 18.5%―47.1%). They are the major sources for anisotropy in eclogite. The average seismic velocities are fast in garnet and rutile, moderate in omphacite and coesite, and slow in quartz. (2) The deformed eclogites have the maximum Vp (8.33―8.75 km/s) approximately parallel to foliation and lineation, the minimum Vp (8.25―8.62 km/s) approximately normal to foliation and lineation and the Vp anisotropies of 1.0―1.7%. Their Vs are 4.93―4.97 km/s. The corresponding maximum anisotropies (0.73%―1.78%) of Vs are at 45° to both foliation and lineation and the minimum anisotropies at positions normal to lineation on the foliation plane. The Vs1 polarization planes are approximately parallel to foliation. The mean Vp and Vs of eclogite under UHP peak metamorphism conditions (P = 3―5 GPa, T = 900―1100℃) are estimated to be 3.4%―7.2% and 6.3%―12.1% higher than those at ambient pressure and temperature conditions, respectively. (3) Omphacite component dominates the anisotropy of eclogite while garnet component reduces the anisotropy and increases the seismic velocities. Quartz component has a small effect on the anisotropy but reduces the seismic velocities of eclogite. The effect of rutile component is negligible on seismic properties of eclogite due to its trivial volume fraction. (4) The increase of volume fraction of omphacite in eclogite will reduce the seismic velocities and increase the anisotropy. Omphacitite has seismic velocities reduced by 6%―8% and anisotropies increased to 3%―4% compared to those of garnetite. Our results suggest that the seismic properties calculated with single crystal elastic properties and CPOs are equivalent to those measured in laboratory. Moreover, it provides insights into the mineral physical interpretations of eclogite seismic properties.  相似文献   

7.
A model has been developed to relate the velocities of acoustic waves Vp and Vs in unconsolidated permafrost to the porosity and extent of freezing of the interstitial water. The permafrost is idealized as an assemblage of spherical quartz grains embedded in a matrix composed of spherical inclusions of water in ice. The wave-scattering theory of Kuster and Toksoz is used to determine the effective elastic moduli, and hence the acoustic velocities. The model predicts Vp and Vs to be decreasing functions of both the porosity and the water-to-ice ratio. The theory has been applied to laboratory measurements of Vp and Vs in 31 permafrost samples from the North American Arctic. Although no direct measurements were made of the extent of freezing in these samples, the data are consistent with the predictions of the model. Electrical resistivity measurements on the permafrost samples have demonstrated their essentially resistive behaviour. The ratio of resistivity of permafrost in its frozen state to that in its unfrozen state has been related to the extent of freezing in the samples. Electromagnetic and seismic reflection surveys can be used together in areas of permafrost: firstly an EM survey to determine the extent of freezing and then the acoustic velocity model to predict the velocities in the permafrost. The necessary transit time corrections can thus be made on seismic reflection records to compensate for the presence of permafrost.  相似文献   

8.
Multiple coverage reflection seismic data provide an important source of information concerning the subsurface. However, due to the stacking and migration techniques used in the processing, the first arrivals are muted and details about the upper part of the sections are generally lost. This paper describes a computerized method for the inverse modelling of laterally varying velocities and shallow depths which are not sufficiently resolved in the reflection seismic processing. The method minimizes, in a least-squares manner, the difference between the observed first arrivals, picked from the reflection traces, and a set of synthetic traveltimes, calculated by ray tracing in a cell model. An initial model, e.g. from a priori knowledge or the application of a conventional interpretation method, is refined iteratively until no further essential improvement can be achieved. Traditional first-arrival inversion methods cannot, in general, provide such flexible modelling. The technique is successfully tested on synthetic data as well as on first arrivals picked automatically from the records of a reflection seismic survey in North Jutland, Denmark.  相似文献   

9.
The screening effect of thin, relatively shallow high-velocity layers often presents considerable problems in seismic exploration. Such layers prevent the greater part of the seismic energy from travelling to greater depths and introduce additional refraction arrivals, confusing the seismogram still further. In order to investigate both the screening and refractive properties of high-velocity layers, scale-model experiments have been made over a wide range of layer-thickness/ wavelength ratios (0.05 < d/λ < 2) for suitably chosen material contrasts. The results may be summarised as follows. Refraction arrivals from thin layers in the field may be recognised by their relatively rapid amplitude decay. Furthermore, the “echeloning”-effect observed for refraction first arrivals may be due to the presence of a (thin) layered structure. Since the apparent refraction velocity varies with d/λ when d/λ < 1, differences between vertical well-log velocities and velocities observed along the surface may be expected, making time/depth conversion using surface velocity data inaccurate. Transmission of elastic energy may be expected, if anywhere, only near the shotpoint, at small geophone offset, and for relatively thin screens (d/λ < 0.1). The transmitted signal shape is then independent of the layer thickness. This transmitted energy may be registered either in a reflection set-up with geophones near the shotpoint, or in long-distance refraction work. Three possibilities are offered for overcoming the screening effect of thin high-velocity layers: Use longer-wavelength signals Apply short-spread reflection shooting Apply long-distance refraction shooting The experimental results obtained in scale-model arrangements of such set-ups confirm the potentialities of these methods.  相似文献   

10.
The ‘Moho’ as a transition zone   总被引:1,自引:0,他引:1  
Results of deep seismic soundings from various areas of the world are presented. Much weight is put on recent European investigations. Seismic refraction surveys are found to yield reliable information on the depth and undulation of the Mohorovii discontinuity (Moho). Wide angle reflection data are used for the derivation of an overall velocity gradient zone of a few kilometers in many continental areas. From near vertical and subcritical reflection data a stepwise character of the gradient zone is deduced. The overall picture from different seismic investigations shows the Moho as a laminar transition zone of a few kilometer thickness. There is a general stepwise increase in the velocity of compressional (P) and shear waves (S), possibly often interrupted by layers with lower velocities, until values around 8 km/s are reached for theP-waves in the uppermost part of the mantle. Petrologic explanations of these features deal with layers of partial melts, crystallisation seams, intrusions and some peeling of mantle matter. Problems of the evolution, shifting, and subduction of the Moho are discussed in the light of plate tectonics.
Zusammenfassung Es werden Ergebnisse tiefenseismischer Sondierungen aus verschiedenen Gebieten der Erde vorgestellt, wobei neuere europäische Untersuchungen ausführlicher behandelt werden. Viele refraktionsseismische Messungen gestatten die Ermittlung von Tiefe und Undulation der Mohorovii Diskontinuität (Moho). Aus seismischen Weitwinkelmessungen läßt sich in vielen Gebieten ein genereller Geschwindigkeitsgradient im untersten Teil kontinentaler Krusten nachweisen. Diese Gradientschicht als Übergangszone zum Mantel ist nach Ergebnissen von Steilwinkel- und anderen unterkritischen Reflexionen stufenförmig ausgebildet. So zeigt eine synoptische Betrachtung aller seismischen Untersuchungen, daß die Moho eine laminar ausgebildete Übergangszone von einigen Kilometern Mächtigkeit ist. Die allgemeine stufenförmige Zunahme der Geschwindigkeitswerte ist möglicherweise oft durch Schichten mit niedrigerer Geschwindigkeit unterbrochen, bis im obersten Teil des Mantels Werte von etwa 8 km/s für die Kompressionswellengeschwindigkeit erreicht werden. Petrologisch sind die Eigenschaften der Übergangszone durch Schichten oder Linsen partieller Schmelzen, durch Kristallisationssäume, Intrusionen oder/und Schuppen des oberen Mantels zu erklären. Probleme der Evolution, der vertikalen und horizontalen Bewegungen sowie des Abtauchens der Moho werden im Zusammenhang mit globaler Tektonik gesehen.
  相似文献   

11.
Classical methods of interpretation of reflection seismic data are such that interpretation and processing usually occur in the “collected” frame of reference. However, in recent times other data planes have gained increasing acceptance in seismology as a viable alternative. Through linear transformations applied to a record section, both the t—p- and p—x-planes can be produced. The r—p-domain may be obtained from the t—x-plane by a transformation known as slant stacking. Normal practice has been to do most of the data processing in the t—x-plane and then transforming to the r—p-plane. However, many of the procedures used in the t—x-domain can be modified for use in the t—p-plane to increase the coherence. Velocity inversion may be carried out either in the r—p-domain or further transformed to the p—x-plane where the modified Herglotz-Wiechert inversion may be applied. To perform the inversion, the t—p-wavefield is converted to a p—x-representation by the use of a new linear transformation technique, the cross-stack. By a simple sampling process along a particular p—x-trajectory, the Herglotz-Wiechert method can be used to reconstruct an acceptable velocity model of the subsurface. A comparison of derived velocity structures is made between that produced by the Herglotz-Wiechert technique and that of the Dix method.  相似文献   

12.
Characterization of shallow structures was performed by using different approaches analysing both P- and S-wave seismic data with different resolution. The refraction tomography provided P and S velocity models of the first 80 m, while the reflection seismic processing gives a reasonable stacking velocity field until 300 m depth for both P- and S-wave data. So, we estimated the Vp/Vs ratio and an empirical relationship between the two velocities. We characterised the shallow layers using tomographic velocity models and the deeper layers using seismic images with different resolution. The seismic images were obtained by conventional CMP reflection seismic processing and by a novel multi-refractor imaging technique.  相似文献   

13.
用Q值刻画的地震衰减在地震信号处理和解释中具有很广泛的应用。利用反射地震资料进行Q值估计需要解决地震子波和反射系数序列耦合的问题。从反射地震资料中去除反射系数序列的影响,这个过程称为频谱校正。本文提出了一种基于子波估计的求取Q值的方法,进而设计了一个反Q滤波器。该方法利用反射地震资料的高阶统计量进行子波估计,并利用所估计子波实现频谱校正。我们利用合成数据实验给出了质心频移法与频谱比法这两种常用的Q值估计方法在不同参数设置下的性能。人工合成数据和实际数据处理表明,利用本文提出的方法进行频谱校正后,可以得到可靠的Q值估计。经过反Q滤波,地震数据的高频部分得到了有效地恢复。  相似文献   

14.
Zusammenfassung Es wird dargelegt wie man eine beliebig gekrümmte Schichtgrenze aus seismischen Reflexionsmessungen längs einer beliebig gekrümmten Messfläche berechnen kann. Dazu wird vorausgesetzt, dass die Flächez=f(x,y), die die Schichtgrenze darstellt und die Messflächez=(x,y) zusammen eine glatte geschlossene Fläche bilden und, dass das eingeschlossene Material homogen und isotrop ist.
Summary Under the assumption that the measuring surfacez=(x,y) and the reflection horizon of a structurez=f(x,y) have an arbitrary curvature a simple method is developed for calculating the surfacef from seismic reflection data measured along the surface . In addition the general solution is discussed and some special cases are treated.
  相似文献   

15.
16.
Three common expressions for the normal moveout of recorded seismic events are investigated by numerical simulation procedures for accuracy in predicting the root-mean-squared (RMS) or mean, as the case may be, subsurface velocity function from seismic data. The principal investigation, for which detailed error curves are shown, was derived for a stochastic subsurface model composed of strata with thicknesses ranging up to 91.4 m (300 ft) and boundary velocity contrasts ranging up to 45.7 m/sec (150 ft/sec); there was a 95 percent chance of velocity increase with increased depth. The effects of changes in the basic statistical subsurface model are discussed. The results appear to confirm the judiciousness of the choices of to and (x/z') as plotting parameters to be used with the respective percent errors in the three expressions, where are, respectively, the zero-offset arrival time of, the offset distance of, and the mean-squared velocity encountered by a seismic ray. Out of the three normal-moveout expressions examined, the “straight-raypath” expression with the RMS velocity substituted as its velocity term proved to be the most accurate in the determination of velocities.  相似文献   

17.
The interpretation of deep seismic sounding (DSS) data has been made on the basis of a two-dimensional inhomogeneous model. The refracted first arrivals as well as reflected and diffracted waves on the seismic records have been utilized. The seismic section was modeled in the iso-veolcity lines v(x, y) = const, taking into account the zones of diffraction associated with deep faults. Gravity observations have been used to construct a block model of the Earth's crust with vertical boundaries. It is suggested to define the base of the crust as the zone with velocities between 7.8 and 8.2 km/s. The reflecting boundaries of different length occurring in this zone can be conformal or unconformal with the iso-velocity lines near the base of the crust. As an example of our approach to the interpretation of DSS data the folded-blocky structure of the crust with horizontal inhomogeneities of velocity and density is shown in the Kzyl-Orda-Dzheskazgan profile in Central Kazakhstan.  相似文献   

18.
We show that the multiple scattering by small fractures of seismic waves with wavelengths long compared to the fracture size and fracture spacing is indistinguishable from multiple-scattering effects produced by regular porosity, except for an orientation factor due to fracture alignment. The fractures reduce theP-wave andS-wave velocities and produce an effective attenuation of the coherent component of the seismic waves. The attenuation corresponds to 1000/Q of about unity for a Gaussian spectrum of fractures, and it varies with frequencyf asf 3. For a Kolmogorov spectrum of fractures of spectral index the attenuation is an order of magnitude or so larger and varies with frequency asf 3-v The precise degree of attenuation depends upon the matrix properties, the fracture porosity, the degree of fracture anisotropy, the type of fluid filling the fractures, and the incidence angle of the wave.For fracture porosities less than about 15% theP-wave andS-wave velocities are decreased by the order of 5–10% with a lesser dependence on the type of fluid filling the fractures (gas, oil, or brine) and with a dependence on both the degree of anisotropy and the incident angle made by the wave. The tendency of fractures to occur perpendicularly to bedding suggests that the best way to measure seismically fractured rock behavior in situ is by using the travel-time delay and reflection amplitude. As both the offset and the azimuth of receivers vary from a shot, the travel-time delay and reflection amplitude should both show an elliptical pattern of behavior—the travel-time delay in response to the varying seismic speed, and the reflection amplitude in response to angular variations in the multiple scattering. Observations of attenuation at several frequencies should permit (a) determination of the spectrum of fractures (Gaussian versus Kolmogorovian) and (b) determination of the contribution of viscous damping to the effective attenuation.  相似文献   

19.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

20.
This study presents the results of experimental compaction while measuring ultrasonic velocities of sands with different grain size, shape, sorting and mineralogy. Uniaxial mechanical compaction tests up to a maximum of 50 MPa effective stress were performed on 29 dry sand aggregates derived from eight different sands to measure the rock properties. A good agreement was found between the Gassmann saturated bulk moduli of dry and brine saturated tests of selected sands. Sand samples with poor sorting showed low initial porosity while sands with high grain angularity had high initial porosity. The sand compaction tests showed that at a given stress well‐sorted, coarse‐grained sands were more compressible and had higher velocities (Vp and Vs) than fine‐grained sands when the mineralogy was similar. This can be attributed to grain crushing, where coarser grains lead to high compressibility and large grain‐to‐grain contact areas result in high velocities. At medium to high stresses the angular coarse to medium grained sands (both sorted sands and un‐sorted whole sands) showed high compaction and velocities (Vp and Vs). The small grain‐to‐grain contact areas promote higher deformation at grain contacts, more crushing and increased porosity loss resulting in high velocities. Compaction and velocities (Vp and Vs) increased with decreasing sorting in sands. However, at the same porosity, the velocities in whole sands were slightly lower than in the well‐sorted sands indicating the presence of loose smaller grains in‐between the framework grains. Quartz‐poor sands (containing less than 55% quartz) showed higher velocities (Vp and Vs) compared to that of quartz‐rich sands. This could be the result of sintering and enlargement of grain contacts of ductile mineral grains in the quartz‐poor sands increasing the effective bulk and shear stiffness. Tests both from wet measurements and Gassmann brine substitution showed a decreasing Vp/Vs ratio with increasing effective stress. The quartz‐rich sands separated out towards the higher side of the Vp/Vs range. The Gassmann brine substituted Vp and Vs plotted against effective stress provide a measure of the expected velocity range to be found in these and similar sands during mechanical compaction. Deviations of actual well log data from experimental data may indicate uplift, the presence of hydrocarbon, overpressure and/or cementation. Data from this study may help to model velocity‐depth trends and to improve the characterization of reservoir sands from well log data in a low temperature (<80–100o C) zone where compaction of sands is mostly mechanical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号