首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了了解降水对接地电阻值的影响,对柳州市气象局国家基本观测站自2012年4月至2013年7月的日降水量和接地电阻值数据进行了分析得出:在少雨季节,降水量对接地电阻的影响表现为负相关性,在多雨季节降水量对接地电阻的影响比较复杂,有负相关也有正相关,降水对接地电阻恢复到降水前值的恢复时间主要取决于降水时间和降水量,但由于受到温度、日照等其它气象因素的影响,同样的降水对接地电阻恢复到降水前值的恢复时间的影响也各有不同。  相似文献   

2.
利用重庆市1961—2012年34个气象观测站的逐日降水资料,采用EOF分析、线性回归及相关分析的方法对重庆市的降水量时空特征、降水频数特征及降水强度特征进行诊断分析研究,并进行了相关讨论.结果表明:重庆市的年总降水量呈逐年减少的变化特征,并且年总降水量存在空间一致性与重庆市东北地区和其他地区反相变化的空间分布形式;各类持续性降水过程频数的空间分布差异较大,持续性降水过程频数的变化趋势表明短期降水过程(持续2 d)逐年增加而持续较长时间(持续5 d及以上)的连阴雨天气过程减少趋势明显;降水强度分析中发现一般降水(小雨、中雨、大雨)的年总降水量呈下降趋势,是引起重庆市年总降水量减少的主要原因,小雨、中雨降水强度逐年减弱而大雨的强度有弱的增强,较强降水等级(暴雨与大暴雨)的年总降水量呈较弱的上升趋势,降水强度也表现为弱的增强趋势;持续5 d及以上降水过程频数的减少可能与当地500 hPa位势高度场的上升及赤道太平洋海表温度的升高相关,大雨及以上等级降水的强度变化可能与El Niño Modoki现象有关.  相似文献   

3.
利用东天山北坡5个国家级地面气象站1961—2016年汛期(5—9月)逐日降水资料,采用线性趋势、相关系数、多项式拟合及Mann-Kendall突变方法,探讨不同量级降水日数时空演变特征及与汛期总降水量的关系。结果表明:随着降水量级升高,对应降水日数迅速减小;近56 a总降水日数、中雨日数、大雨日数和暴雨日数均呈增加趋势,其中大雨日数增加趋势最明显,对总降水日数的增加贡献最大,小雨日数呈明显的减小趋势,大雨日数在1991年发生突变,暴雨日数在1980年发生由少到多的突变,其他降水日数表现为下降趋势,但均未发生突变;从不同量级降水日数空间分布可知,除了小雨日数其他量级降水日数都是以木垒为高值中心,逐渐向东西两侧减小,最低值一般出现在伊吾和吉木萨尔;汛期随着降水量级上升,降水日数与汛期总降水量相关系数也不断增大,小雨日数与总降水量相关性最差,与大雨日数相关性最高。  相似文献   

4.
利用1953—2015年深圳国家基本气象站气候平均值资料统计分析了近63年来深圳市的气温和降水的变化趋势。结果表明:深圳市气温平均值逐渐增大且趋势越来越明显,增暖具有明显的季节性,秋冬季升高幅度更明显;全年及后汛期降水量的气候平均值呈下降趋势。前汛期降水量的气候平均值呈增加趋势,多雨和少雨期的降水量差距十分显著;降水日数呈波动下降的趋势,并且浮动幅度越来越小。  相似文献   

5.
2019年夏季山东平均降水量为414.6 mm,较常年偏多3.0%。降水过程较少,时空分布不均,降水偏多主要是由台风“利奇马”影响所致,如果去除台风降水,夏季平均降水量较常年偏少41.8%。夏季西太平洋副热带高压持续偏强、偏西、偏南,配合欧亚中高纬的“两槽一脊”环流型,是去除台风影响后造成山东夏季降水明显偏少的直接原因;2018年9月至2019年6月的厄尔尼诺事件和热带印度洋海面温度的持续偏高对西太平洋副热带高压偏强、偏西、偏南起到重要作用;北大西洋海面温度三极子持续的正位相与贝加尔湖高压脊偏强有着密切联系。  相似文献   

6.
彭莉莉  邓剑波  谢傲 《湖北气象》2020,39(2):201-206
利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日-2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。  相似文献   

7.
神木县近55年气候特征及变化分析   总被引:2,自引:0,他引:2       下载免费PDF全文
摘要:利用神木县1957--2011年气温、降水、相对湿度、日照时数等气象观测资料,分析神木县气候特征及变化规律。结果表明.年平均气温呈上升趋势,四季中冬季气温升高趋势最显著;年降水量呈缓慢下降趋势,年际变化较大,年内分布不均匀.主要集中在5—9月,降水量主要分布在200~600mm日照充足,年日照时数呈下降趋势;降水偏少,空气湿度低,气候以干旱为主。  相似文献   

8.
中国北方农牧交错带气候变化特征及未来趋势   总被引:12,自引:0,他引:12  
利用1951—2006年中国台站日平均观测资料对北方农牧带过去56a气候变化特征进行了分析,指出该农牧带年降水量具有明显的年际和年代际变化特征,近10a来呈明显的下降趋势;年平均气温在20世纪90年代前期变化幅度较小,1987年之后持续偏暖,与全球及中国温度变化趋势一致;降水和温度变化具有明显的季节和区域差异。在气候特征分析基础上,利用全球海气耦合模式嵌套区域气候模式在SRES A2排放情景下对未来30a(2001-2030年)的气候变化进行了预估,对照30a模式气候场(1961—1990年),分析了未来30a北方农牧交错带降水和温度变化的可能趋势,结果表明,未来该区平均地面气温持续升高,升温幅度达0.3℃,温度日较差将明显减小;年降水量呈增加趋势,但增加幅度较小,且降水变化具有明显的季节和地域差异;未来黄河上游地区干旱的威胁仍十分严峻。  相似文献   

9.
基于Hurst指数的黑龙江省作物生长季降水趋势研究   总被引:1,自引:0,他引:1  
基于黑龙江省78个气象站1971—2016年逐日降水资料,综合采用墨西哥帽小波分析、Hurst指数分析等方法,对黑龙江省作物生长季(5—9月)降水量变化和未来趋势进行分析及预测。结果表明:1971—2016年,黑龙江省生长季、5月、6月降水量存在7 a、14 a、7 a左右的主周期,7月、8月、9月降水量存在2 a、3 a、7 a左右的第1主周期及6 a、11 a、21 a左右的第2主周期,各月均存在最近几年降水偏多的趋势;作物生长季降水量年际间为波动式振荡变化,7月、8月振荡幅度相对较大。年代际变化总体存在增加—减少—增加趋势,20世纪80年代、90年代降水量普遍偏多,2010年以来出现急转升高变化;单站各月Hurst指数均在0.5以上,降水存在比较明显的赫斯特现象;降水主要出现在夏季且以7月最为集中,最近几年降水偏多、7月异常降水集中以及主要流域未来7月降水的持续增加趋势在农业防灾减灾上值得关注。  相似文献   

10.
利用四子王旗气象站1959—2010年月平均气象资料,在较长时间尺度上分析了植物生长季节(5—9月)月平均气温、降水量和日照百分率的变异度,以及降水与温度、降水与日照百分率之间的关系,评估了降水是否是影响温度和日照的主要因素。结果表明:①5月和9月降水量较少,日照百分率大,气温低;月降水量和平均气温的变异度较大,日照百分率的变异度相对较小;而7、8月降水较多、气温较高,气温和降水变异度都较小。②5月和9月温度受降水以外因子影响较大,其与降水的相关性较差;6—8月,温度与降水呈显著的负相关关系,降水量多则气温低,影响效果明显。③除6月外,各月降水量与日照百分率负相关关系显著,线性拟合效果优于气温,日照百分率随降水量的增加明显降低。盛夏,受夏季风影响,该地水汽条件好,云层厚且不易消散,导致光照少,是日照百分率较低的主要原因。  相似文献   

11.
为了研究青藏高原(简称高原)春末(5月)土壤湿度与初夏(6月)降水的关系,利用1979-2019年ERA-Interim土壤湿度月平均资料和同时段高原109站观测降水资料,分析了高原春季土壤湿度与汛期(5-9月)降水之间的关系.结果 表明:春末表层(0~28 cm)土壤湿度与高原初夏降水呈显著的正相关,在空间上土壤湿度...  相似文献   

12.
利用1982—2020年三江平原19个国家气象观测站土壤湿度及同期降水、气温数据, 基于相关系数和自相关系数统计方法, 分析了黑龙江省三江平原土壤湿度记忆性及与降水、气温之间的关系。结果表明: 春、夏季三江平原土壤湿度记忆时间均在10—40 d, 各层土壤湿度记忆性的空间分布以中间层(10—20 cm)土壤湿度平均记忆时间最长, 呈上下层递减的趋势; 春季三江平原10—20 cm土层土壤湿度的记忆时长平均20 d, 夏季平均17 d; 夏季土壤湿度记忆性强度大于春季, 空间分布以三江平原西部的记忆性较强, 随着土层的增加土壤湿度记忆性有增大的趋势。降水是三江平原土壤湿度主要来源, 受降水和气温协同作用的影响, 夏、秋季土壤湿度与同期降水量、温湿指数均存在显著的正相关关系; 春季土壤湿度与前期秋冬季降水亦呈显著正相关, 与前期温湿指数呈负相关, 前期秋冬季气温的升高会促进土壤的融冻, 从而使当年春季土壤水分增加。  相似文献   

13.
青藏高原复杂下垫面能量和水分循环季节变化特征分析   总被引:2,自引:2,他引:0  
为深入认识青藏高原能量和水分循环季节变化,利用GSWP(Global Soil Wetness Project)、GLDAS(Global Land Data Assimilation System)、AMSR-E(Advance Microwave Scanning Radiometer-EOS)土壤湿度以及台站观测资料等多种数据,采用滑动t检验初步分析高原下垫面各物理量季节变化特征。结果表明:各物理量季节变化特征明显且联系密切。高原下垫面净短波辐射和感热通量在1月中旬显著开始增加,5~6月达到全年最高值。净长波辐射5月表现为高值,夏季表现为低值。地表潜热通量在1月显著开始增加,在夏季达到全年最高值。表层土壤3月开始输送热量到大气,9月大气开始向土壤表层传递热量;融雪3~5月加快,雪盖减少。降水和1 cm植被含水量在2月显著开始增加,1 cm土壤显著开始加湿,5~6月降水陡增,1 cm土壤湿度表现为峰值。1 cm植被含水量、植被蒸腾、总蒸散与降水在7~8月达全年最高值,1 cm土壤湿度在7月表出现为谷值,9月达全年第二峰值。10月下垫面温度转冷后,雪盖增加,土壤湿度逐渐减小。  相似文献   

14.
基于土壤湿度融合分析产品及气象观测资料,分析了青藏高原及其典型区域的土壤湿度分布特征以及影响因素.结果表明:青藏高原土壤湿度与高原降水季节有较好的对应关系,降水量多的季节对应大的土壤湿度,反之亦然,即夏季土壤湿度最大,春季和秋季次之,冬季最小;高原外围土壤相对较湿,中部较干,夏季土壤高湿度区从藏东南向西北、塔里木盆地向藏东北扩展,冬季土壤高湿度区向藏东南和塔里木盆地收缩;土壤湿度垂直层次呈现出浅层和深层低、中间层高的特点,从浅层到深层土壤湿度的变化幅度逐渐减小;高原典型区域土壤湿度逐日变化规律与高原区域平均的土壤湿度时间演变接近一致,降水量的多少和湿润区、半干旱区土壤湿度高低值有较好的对应关系,湿润区垂直梯度大,干旱区和半干旱区垂直梯度小;蒸发量、风速、气温以及植被状况均会影响到土壤湿度的分布特征.  相似文献   

15.
在西太平洋副热带高压控制的天气背景下,2016年8月19日下午上海地区发生一次局地短时强降水过程,此次过程历时3 h、水平范围20~40 km,呈现出生命史短、局地性强的特点。基于上海地区地面自动气象站2分钟平均资料,采用仅需一层资料计算的非地转 Q 矢量分析方法,研究分析了此次局地短时强降水发生发展演变成因,结果如下:(1)地面温度场和风场叠加分析表明,上海“城市热岛”特征与长江沿岸及邻近水域的热力不均匀分布引发了江风,江风将江岸邻近水域的湿、冷空气向城市陆地输送,并与陆地上干、热空气交汇,激发产生局地短时强降水,而降水的发生,导致地面温度下降、“城市热岛”特征减弱,从而减小水陆温度差,进而减弱江风,这直接减弱了有助于降水发生发展的动、热力强迫条件,促使降水趋于衰亡结束。(2)地面 Q 矢量散度辐合场和温度露点差叠加分析表明:在降水发生发展阶段, Q 矢量散度辐合强迫产生垂直上升运动较强,而空气湿度条件相对较弱;在降水强盛阶段, Q 矢量散度辐合强度和空气湿度的强度不仅增至最强,且上升运动区与高湿区重合;在降水衰亡阶段,地面空气一直维持高湿条件而 Q 矢量散度辐合强度明显减弱。这从地面大气中垂直上升运动条件和水汽条件揭示出致使降水强度发展演变的内在因素,且二者重叠区对降水落区有较好指示意义。最后,对地面 Q 矢量散度辐合场在局地短时强降水短临预报工作中的潜在应用前景进行了有意义的讨论。   相似文献   

16.
We have studied future changes in the atmospheric and hydrological environments in Northeast Thailand from the viewpoint of risk assessment of future cultural environments in crop fields. To obtain robust and reliable estimation for future climate, ten general circulation models under three warming scenarios, B1, A1B, and A2, were used in this study. The obtained change trends show that daily maximum air temperature and precipitation will increase by 2.6°C and 4.0%, respectively, whereas soil moisture will decrease by c.a. 1% point in volumetric water content at the end of this century under the A1B scenario. Seasonal contrasts in precipitation will intensify: precipitation increases in the rainy season and precipitation decreases in the dry season. Soil moisture will slightly decrease almost throughout the year. Despite a homogeneous increase in the air temperature over Northeast Thailand, a future decrease in soil water content will show a geographically inhomogeneous distribution: Soil will experience a relative larger decrease in wetness at a shallow depth on the Khorat plateau than in the surrounding mountainous area, reflecting vegetation cover and soil texture. The predicted increase in air temperature is relatively consistent between general circulation models. In contrast, relatively large intermodel differences in precipitation, especially in long-term trends, produce unwanted bias errors in the estimation of other hydrological elements, such as soil moisture and evaporation, and cause uncertainties in projection of the agro-climatological environment. Offline hydrological simulation with a wide precipitation range is one strategy to compensate for such uncertainties and to obtain reliable risk assessment of future cultural conditions in rainfed paddy fields in Northeast Thailand.  相似文献   

17.
中国不同气候区土壤湿度特征及其气候响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得中国不同气候区各层深度土壤湿度变化特征及其对气候变化的响应,利用中国区域台站观测土壤湿度资料、降水及气温资料,采用趋势、相关性分析及突变检验等方法,讨论了东北、河套、江淮区域1981~1999年不同深度土壤湿度变化特征及其对气温、降水的响应。结果表明:东北、江淮地区为土壤湿度高值区,河套地区为土壤湿度低值区,土壤湿度由浅层至深层呈上升趋势;东北、河套地区降水和土壤湿度变化呈正相关,江淮地区降水和土壤湿度呈负相关;东北、河套地区气温和土壤湿度变化呈负相关,江淮地区气温与土壤湿度呈正相关关系。土壤湿度对降水的响应比对气温变化的响应更加显著。   相似文献   

18.
活动层作为多年冻土与大气系统之间能量和水分交换通道,其内部的水热状况是控制水循环和地表能量平衡的主要因素,并直接影响着寒区生态环境、水文过程以及多年冻土的稳定性.利用一维水热耦合模型CoupModel,对青藏高原风火山试验点活动层土壤剖面温湿度进行了模拟.模拟效率参数表明模拟结果很好地反映了研究区多年冻土活动层水热状况...  相似文献   

19.
利用耦合了陆面过程模式(CLM4.5)的区域气候模式(RegCM4)分别对青藏高原的一个多雪年和少雪年进行了数值模拟.通过对比模拟雪深与遥感雪深、土壤温湿度的模拟值与观测值、多雪年与少雪年的土壤温湿度模拟值,结果表明,RegCM4-CLM4.5可以有效模拟出高原的多雪年与少雪年特征,模拟雪深大值中心比遥感雪深高10~2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号