首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluating the flow paths that contribute to solute flux in stream networks can lead to greater understanding of the linkages between biogeochemistry and hydrology. We compared the contributions of groundwater in spring brooks and in seepage through the streambed to nitrate flux in the Emmons Creek network in the Wisconsin sand plains. We predicted that spring brooks would contribute disproportionately to nitrate flux due to the presumed higher advection rates in springs and less opportunity for nitrate removal relative to seeps. Nitrate flux was measured in 15 spring brooks that entered Emmons Creek. Nitrate flux from seepage was measured at the locations of 30 piezometers, based on Darcy's Law, and by a reach‐scale injection of Rhodamine water tracing (RWT). When seepage discharge was estimated from the RWT release, groundwater inputs from seepage and springs accounted for the discharge gain in the Emmons Creek channel. Springs brooks and seepage (based on the RWT release) contributed 37% and 63%, respectively, to nitrate flux inputs in the study reach. Contrary to our prediction, seeps contributed disproportionately to nitrate flux relative to their discharge. Relatively high rates of seepage discharge and higher than anticipated nitrate concentrations in the shallow pore water at seepage locations contributed to the unanticipated result.  相似文献   

2.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air‐water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non‐freezing conditions, and no solar radiation.  相似文献   

4.
A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.  相似文献   

5.
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. The objective of this study was to evaluate water percolation through epikarst by monitoring water flow into a cave and conducting artificial irrigation and tracer experiments, at Sif Cave in Wadi Sussi, Israel from 2005 through 2007. The research is based on continuous high‐resolution direct measurements of both rainfall and water percolation in the cave chamber collected by three large PVC sheets which integrate drips from three different areas (17, 46, and 52 m2). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas. The combined measured rainfall and cave data enables estimation of recharge into the epikarst and to better understand the relationship of rainfall‐recharge. Three distinct types of flow regimes were identified: (1) ‘Quick flow’ through preferential flow paths (large fractures and conduits); (2) ‘Intermediate flow’ through a secondary crack system; and (3) ‘Slow flow’ through the matrix. A threshold of ~100 mm of rain at the beginning of the rainy season is required to increase soil water content allowing later rainfall events to percolate deeper through the soil and to initiate dripping in the cave. During winter, as the soil water content rises, the lag time between a rain event and cave drip response decreases. Annual recharge (140–160 mm in different areas in the cave) measured represents 30–35% of annual rainfall (460 mm). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

7.
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water.  相似文献   

8.
A major assumption in palaeoclimatic studies using speleothems is that cave‐seepage waters are homogenized as they pass through the bedrock, so that they record the average annual isotopic signal of precipitation. A year‐long study during 2001–02 was conducted at Indian Oven Cave in eastern New York State, USA, to investigate how cave‐seepage water isotopic signals relate to those of precipitation. Samples were collected biweekly and analysed for stable isotopes of oxygen and hydrogen. Our study shows that, for this cave, homogenization did not occur, as seepage waters had the same seasonal variability as precipitation. However, mean seepage water isotopic values were very close to those of the mean values for precipitation. Rapid flow‐through times of seepage water show that the speleothems can record climate conditions above the cave contemporaneously. At one location, flow ceased during the winter; therefore, isotopes measured in cave drip waters reflected only the enriched summer isotopes. Under certain circumstances, the analysis of calcite sampled from those drip waters may then lead to a false conclusion of a warming during that period, instead of the fact that it was merely a drier winter period. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
MARI  OGAWA  AKIRA  TAKEUCHI  MUTSUO  HATTORI  MASAHARU  OKANO  MISUMI  AOKI  MAKIKO  IMAMURA  TOYOKI  KSUBOI  TOMONORI  TSUBOI  DAISUKE  TANIMOTO  TAKESHI  NAGANUMA 《Island Arc》2002,11(4):274-286
Abstract   The manned submersible Shinkai 2000 investigated yellow patches on the near-summit slope of Shiribeshi Seamount in the Japan Sea. Yellowish patches are often associated with seepage, and the possibility of seepage at Shiribeshi Seamount was tested by the following four lines of observation: (i) high subsurface temperature was measured at a ring-like patch, although no increase in subsurface temperature was observed at other patches; (ii) high gamma ray (γ-ray) intensity from the thorium series was recorded in the patch zone; (iii) the yellowish deposit was composed of calcite, quartz and amorphous iron compound, as seen at the yellowish patches in other seeps and volcanoes; (iv) lipid phosphate, a measure of microbial abundance, in sediments of the ring-like patch was determined, and the recorded microbial abundance was higher inside the patch than outside it. The four lines of observation are explained consistently by postulating that the seepage of warm fluid contained Fe and γ-ray sources. A hydrothermal origin of the yellow patches is not ruled out for the extinct but young (0.9 Ma) arc volcano.  相似文献   

10.
Detailed monitoring of surface atmospheric and subterranean microclimatic conditions has provided a new opportunity to interpret drip water temperature changes associated with climate variability. High-resolution multi-index monitoring was conducted in Xiaoyan Cave, Guilin, southwest China, for a period of four years (2011–2014) to identify the processes that control drip water temperature. The results show that variations in drip water temperature are mainly coupled to changes in the cave air temperature unless large drip discharge occurs. The controls on cave air temperature depend on the ventilation modes that eventually affect drip water. The multiple thermal mechanisms are winter ventilation, heat conduction in summer and water flow-induced convection derived from subsurface water percolation into the cave due to fast preferential flow during heavy rain events. Drip water response to extreme temperature anomalies is shown to be sensitive to outside climate.  相似文献   

11.
In the present study, groundwater seepage to an alluvial stream and two tributary streams was examined at nine field sites using hydrological, geophysical, and geomorphological observations. The data indicate that seepage enters the streams in the following ways: (i) directly through the streambed; (ii) as nearly superficial flow from diffuse discharge areas on the flood plains or; (iii) as a combination of (i) and (ii). At about 40% of the sites more than 50% of seepage flows through the streambed. Moreover, it was found that the ratio C, defined as the width of the wet zone of the flood plain divided by the effective width of the stream, can be used as an indicator of the percentage of water entering the stream directly through the streambed. When C is small streambed seepage is large, while when C is large streambed seepage is small and ground water enters the stream mainly as nearly superficial or over-bank flow from the wet zone.  相似文献   

12.
Material fluxes associated with fluid expulsion at cold seeps and their contribution to oceanographic budgets have not been accurately constrained. Here we present evidence that the barium released at cold seeps along the San Clemente Fault zone may significantly impact the geochemical budget of barium within the basin. Barium fluxes at seep localities on the fault scarp, measured with benthic chambers, reach values as high as 5 mmol m−2 day−1. This is the largest dissolved barium flux measured to date at a cold seep. The discharge of barium-rich fluids results in formation of massive barite deposits along the escarpment wall. The deposits are young (approximately 8 yr) and appear to grow at a minimum rate of 0.2 cm yr−1. This rapid growth rate requires a barium efflux rate that is about two orders of magnitude higher than the measured dissolved flux. We believe that the discrepancy reflects a highly localized seepage system and that chambers positioned as close as possible to the growing chimneys did not sample the foci of fluid discharge. Transport of fine barite particles from the seeps may be responsible for excess rates of barium accumulation throughout the San Clemente Basin, relative to other basins in the California Margin. Based on a preliminary budget, we estimate that cold-seep barite is accumulating at the basin floor in San Clemente at a rate of 2 μmol m−2 day−1, a value that is comparable to the total barium accumulation rates driven by detrital and biogenic components in neighboring basins. Remobilization of cold-seep barite on the basin floor adds to that driven by the biogenic barium flux and results in benthic barium recycling rates (effluxes) within the San Clemente Basin that are as much as seven times higher than the effluxes from surrounding borderland basins. Our estimates imply that processes associated with fluid seepage along the San Clemente Fault significantly contribute to the basin’s barium cycle. The strontium isotopic composition of the seep barite is significantly different from marine ‘biogenic’ barite, which is known to accurately record seawater composition. In addition, the seep deposits are depleted in 226Ra relative to their modern biogenic counterparts, and are likely to be a source of radium-depleted particulate barium to the basin. Thus the impact of barite transport from seeps on the San Clemente escarpment to the basin floor might also have implications for the geochemistry of elements other than barium.  相似文献   

13.
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.  相似文献   

14.
Ground‐based handheld thermal infrared imagery was used for the detection of small‐scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1–2 cm were observed along the beach at a distance of 2–3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3–5 °C higher) and a lower electric conductivity (<10 mS/cm) in contrast to the surrounding sea water (1–2 °C, >30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small‐scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground‐based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters.  相似文献   

15.
To investigate processes of water percolation, the drip response of stalactites in a karstic cave below a 143 m2 sprinkling plot was measured. The experiment was conducted in Mount Carmel, Israel, at the end of the dry season and intended to simulate a series of two high‐intensity storms on dry and wet soils. In addition to hydrometric measurements (soil moisture, surface runoff, stalactite dripping rates), two types of tracers (electrical conductivity and bromide) were used to study recharge processes, water origin and mixing inside a 28‐m vadose zone. Results suggested that slow, continuous percolation through the rock matrix is of minor importance and that percolating water follows a complicated pattern including vertical and horizontal flow directions. While bromide tracing allowed identification of quick direct flow paths at all drips with maximum flow velocities of 4·3 m/h, mixing analysis suggested that major water fractions were mobilized by piston flow, pushing out water stored in the unsaturated zone above the cave. Under dry preconditions, 80 mm of artificial rainfall applied in less than 7 h was not enough to initiate significant downward water percolation. Most water was required to fill uppermost soil and rock storages. Under wet preconditions during the second day sprinkling, higher water contents in soils and karst cavities facilitated piston flow effects and a more intense response of the cave drips. Results indicate that in Mediterranean karst regions, filling of the unsaturated zone, including soil and rock storages, is an important precondition for the onset of significant water percolation and recharge. This results in a higher seasonal threshold for water percolation than for the generation of surface runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Pore water radon (222Rn) distributions from Indian River Lagoon, Florida, are characterized by three zones: a lower zone where pore water 222Rn and sediment-bound radium (226Ra) are in equilibrium and concentration gradients are vertical; a middle zone where 222Rn is in excess of sediment-bound 226Ra and concentration gradients are concave-downward; and an upper zone where 222Rn concentration gradients are nearly vertical. These 222Rn data are simulated in a one-dimensional numerical model including advection, diffusion, and non-local exchange to estimate magnitudes of submarine groundwater discharge components (fresh or marine). The numerical model estimates three parameters, fresh groundwater seepage velocity, irrigation intensity, and irrigation attenuation, using two Monte Carlo (MC) simulations that (1) ensure the minimization algorithm converges on a global minimum of the merit function and the parameter estimates are consistent within this global minimum, and (2) provide 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Model estimates of seepage velocities and discharge agree with previous estimates obtained from numerical groundwater flow models and seepage meter measurements and show the fresh water component decreases offshore and varies seasonally by a factor of nine or less. Comparison between the discharge estimates and precipitation patterns suggests a mean residence time in unsaturated and saturated zones on the order of 5 to 7 months. Irrigation rates generally decrease offshore for all sampling periods. The mean irrigation rate is approximately three times greater than the mean seepage velocity although the ranges of irrigation rates and seepage velocities are the same. Possible mechanisms for irrigation include density-driven convection, wave pumping, and bio-irrigation. Simulation of both advection and irrigation allows the separation of submarine groundwater discharge into fresh groundwater and (re)circulated lagoon water.  相似文献   

17.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
To detect the causal relationship between cave drip waters and stalagmite laminae, which have been used as a climate change proxy, three drip sites in Beijing Shihua Cave were monitored for discharge and dissolved organic carbon (DOC). Drip discharges and DOC were determined at 0 to 14‐day intervals over the period 2004–2006. Drip discharges show two types of response to surface precipitation variations: (1) a rapid response; and (2) a time‐lagged response. Intra‐annual variability in drip discharge is significantly higher than inter‐annual variability. The content of DOC in all drip waters varies inter‐ and intra‐annually and has good correlation with drip water discharge at the rapid response sites. High DOC was observed in July and August in the three years observed. The flushing of soil organic matter is dependent upon the intensity of rain events. The DOC content of drip water increases sharply above a threshold rainfall intensity (>50 mm d?1) and shows several pulses corresponding with intense rain events (>25 mm d?1). The DOC content was lower and less variable during the dry period than during the rainy period. The shape of DOC peak also varies from year to year as it is influenced by the intensity and frequency of rainfall. The different drip sites show marked differences in DOC response, which are dominated by hydrological behaviour linked to the recharge of the soil and karst micro‐fissure/porosity network. The results explain why not all stalagmite laminae are consistent with climate changes and suggest that the structure of the rainy season events could be preserved in speleothems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
海底冷泉的地震海洋学初探   总被引:3,自引:3,他引:0       下载免费PDF全文
海底冷泉活动在全球大陆边缘海域广泛分布.与传统利用高频声学方法探测海底冷泉羽状流不同,本文利用常规多道反射地震(地震海洋学)方法对海底边界附近水体进行成像,结合盆地流体逸散结构特征,圈定活动冷泉流体活动发育位置,分析其地震反射特征和流体活动特征.研究表明,活动冷泉流体渗漏、逸散活动在多道反射地震剖面上一般呈羽状、扫帚状和不规则状几何形态,内部反射杂乱,反射振幅偏弱,但也有振幅增强的情况出现,这可能是由于含有较多泥质和细粒颗粒物悬浮.所造成的.冷泉活动一般与盆地内部泥底辟、流体管道、断层和裂隙、气烟囱、海底麻坑和泥火山等流体逸散结构相关,反映了地层内部流体自深部向浅部运移,在海底渗漏、逸散形成了活动冷泉.但分析结果仍需要进一步实地观测和理论模拟等相关研究确认.  相似文献   

20.
Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient‐sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient‐sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub‐set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment‐scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号