首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We present new methods for the interpretation of 3-D seismic wide-angle reflection and refraction data with application to data acquired during the experiments CELEBRATION, 2000 and ALP 2002 in the area of the Eastern Alps and their transition to the surrounding tectonic provinces (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was acquired on a net of arbitrarily oriented seismic lines by simultaneous recording on all lines of seismic waves from the shots, which allows 2-D and 3-D interpretations. Much (80%) of the data set consists of crossline traces. Low signal to noise (S/N) ratio in the area of the young orogens decreases the quality of travel time picks. In these seismically heterogeneous areas it is difficult to assign clearly defined arrivals to the seismic phases, in particular on crossline record sections.
In order to enhance the S/N ratio, signal detection and stacking techniques have been applied to enhance the Pg -, Pn - and PmP phases. Further, inversion methods have been developed for the interpretation of WAR/R-data, based on automated 1-D inversion ( Pg ) and the application of the delay time concept ( Pn ). The results include a 3-D velocity model of the crust based on Pg waves, time and depth maps of the Moho and a Pn -velocity map. The models based on stacked data are robust and provide a larger coverage, than models based on travel time picks from single-fold (unstacked) traces, but have relatively low resolution, especially near the surface. They were used as the basis for constructing models with improved resolution by the inversion of picks from single-fold data. The results correlate well with geological structures and show new prominent features in the Eastern Alps area and their surrounds. The velocity distribution in the crust has strong lateral variations and the Moho in the investigation area appears to be fragmented into three parts.  相似文献   

6.
Simultaneous inversion of seismic data   总被引:2,自引:0,他引:2  
Summary. The resolving power of different data sets, consisting of surface-wave dispersion measurements and S travel times, are compared for a continental structure. The shear velocity in the low-velocity zone can be resolved in some detail with higher-mode phase-velocity data. Sufficient resolution for small density contrasts (0.03 g cm−3) until depths of ∼ 300 km can be reached if higher-mode group velocities are available as well, even at a precision as low as 0.10 km/s. At greater depths the density is not resolved, and here travel-time data are superior to higher modes in resolving the shear velocity.  相似文献   

7.
Summary. The structure of the upper lithosphere beneath southern Germany, northern Switzerland and west-central Utah (U.S.A.) has been investigated in detail by various geophysical methods. A synoptic interpretation of travel time and amplitude data obtained in seismic refraction and wide-angle reflection surveys, combined with near-normal incidence reflection observations, now permits the elucidation of the fine structure in a more quantitative and unified manner. With this scheme it is possible to unambiguously identify low-velocity zones and to deduce velocity gradients if reliable amplitude information is included in the inversion process.  相似文献   

8.
Least-squares fitting of marine seismic refraction data   总被引:2,自引:0,他引:2  
Summary. An iterative procedure is presented for fitting waveform data from a marine seismic refraction experiment. The wavefunction from the explosive source is known and the crustal structure is refined using the damped least squares procedure. The damping parameter serves the dual purpose of stabilizing an under-constrained inversion and improving the linearity by suppressing high frequencies. The synthetic seismograms and their model differentials are calculated using the WKBJ seismogram method. Both the synthetic seismograms and the linear algebra are sufficiently straightforward that the computations can be performed on an array processor. The inversion procedure is then sufficiently rapid that interactive computations are possible. The technique is illustrated using the FF2 refraction data from the Fanfare cruise of the Scripps Institution of Oceanography. These data had been interpreted previously by trial-and-error using the reflectivity method. Starting from two different, simple models, the inversion procedure obtains essentially one unique model. Its features are very similar to the previous model.  相似文献   

9.
10.
11.
12.
Summary. A new method is presented for the direct inversion of seismic refraction data in dipping planar structure. Three recording geometries, each consisting of two common-shot profiles, are considered: reversed, split, and roll-along profiles. Inversion is achieved via slant stacking the common-shot wavefield to obtain a delay time–slowness (tau– p ) wavefield. The tau– p curves from two shotpoints describing the critical raypath of refracted and post-critically reflected arrivals are automatically picked using coherency measurements and the two curves are jointly used to calculate velocity and dip of isovelocity lines iteratively, thereby obtaining the final two-dimensional velocity model.
This procedure has been successfully applied to synthetic seismograms calculated for a dipping structure and to field data from central California. The results indicate that direct inversion of closely-spaced refraction/wide-aperture reflection data can practically be achieved in laterally inhomogeneous structures.  相似文献   

13.
Summary . Born inverse methods give accurate and stable results when the source wavelet is impulsive. However, in many practical applications (reflection seismology) an impulsive source cannot be realized and the inversion needs to be generalized to include an arbitrary source function. In this paper, we present a Born solution to the seismic inverse problem which can accommodate an arbitrary source function and give accurate and stable results. It is shown that the form of the generalized inversion algorithm reduces to a Wiener shaping ***filter, which is solved efficiently using a Levinson recursion algorithm. Numerical examples of synthetic and real field data illustrate the validity of our method.  相似文献   

14.
15.
Joint inversion of active and passive seismic data in Central Java   总被引:2,自引:0,他引:2  
Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (−30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java M w= 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.  相似文献   

16.
17.
18.
19.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号