共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Jesus Zavala † Takashi Okamoto Carlos S. Frenk 《Monthly notices of the Royal Astronomical Society》2008,387(1):364-370
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum. 相似文献
5.
6.
7.
A model of supernova feedback in galaxy formation 总被引:3,自引:0,他引:3
G. Efstathiou 《Monthly notices of the Royal Astronomical Society》2000,317(3):697-719
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1 . Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems. 相似文献
8.
Geraint Harker Shaun Cole Adrian Jenkins 《Monthly notices of the Royal Astronomical Society》2007,382(4):1503-1515
We generate mock galaxy catalogues for a grid of different cosmologies, using rescaled N -body simulations in tandem with a semi-analytic model run using consistent parameters. Because we predict the galaxy bias, rather than fitting it as a nuisance parameter, we obtain an almost pure constraint on σ8 by comparing the projected two-point correlation function we obtain to that from the Sloan Digital Sky Survey (SDSS). A systematic error arises because different semi-analytic modelling assumptions allow us to fit the r -band luminosity function equally well. Combining our estimate of the error from this source with the statistical error, we find σ8 = 0.97 ± 0.06 . We obtain consistent results if we use galaxy samples with a different magnitude threshold, or if we select galaxies by b J -band rather than r -band luminosity and compare to data from the 2dF Galaxy Redshift Survey (2dFGRS). Our estimate for σ8 is higher than that obtained for other analyses of galaxy data alone, and we attempt to find the source of this difference. We note that in any case, galaxy clustering data provide a very stringent constraint on galaxy formation models. 相似文献
9.
10.
11.
12.
Bruno M. Henriques Serena Bertone Peter A. Thomas 《Monthly notices of the Royal Astronomical Society》2008,383(4):1649-1654
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at z = 0 . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies. 相似文献
13.
Vicent Quilis Richard G. Bower Michael L. Balogh 《Monthly notices of the Royal Astronomical Society》2001,328(4):1091-1097
We use a three-dimensional hydrodynamical code to simulate the effect of energy injection on cooling flows in the intracluster medium. Specifically, we compare a simulation of a 1015 -M⊙ cluster with radiative cooling only with a second simulation in which thermal energy is injected 31 kpc off-centre, over 64 kpc3 at a rate of for 50 Myr. The heat injection forms a hot, low-density bubble which quickly rises, dragging behind it material from the cluster core. The rising bubble pushes with it a shell of gas which expands and cools. We find the appearance of the bubble in X-ray temperature and luminosity to be in good qualitative agreement with recent Chandra observations of cluster cores. Toward the end of the simulation, at 600 Myr, the displaced gas begins to fall back toward the core, and the subsequent turbulence is very efficient at mixing the low- and high-entropy gas. The result is that the cooling flow is disrupted for up to ∼ 50 Myr after the injection of energy ceases. Thus this mechanism provides a very efficient method for regulating cooling flows, if the injection events occur with a 1:1 duty cycle. 相似文献
14.
15.
16.
17.
18.
Scott T. Kay F. R. Pearce A. Jenkins C. S. Frenk S. D. M. White P. A. Thomas H. M. P. Couchman 《Monthly notices of the Royal Astronomical Society》2000,316(2):374-394
Numerical simulations of galaxy formation require a number of parameters. Some of these are intrinsic to the numerical integration scheme (e.g., the time-step), while others describe the physical model (e.g., the gas metallicity). In this paper we present results of a systematic exploration of the effects of varying a subset of these parameters on simulations of galaxy formation. We use N -body and 'Smoothed Particle Hydrodynamics' techniques to follow the evolution of cold dark matter and gas in a small volume. We compare a fiducial model with 24 different simulations, in which one parameter at a time is varied, focusing on properties such as the relative fraction of hot and cold gas, and the abundance and masses of galaxies. We find that for reasonable choices of numerical values, many parameters have relatively little effect on the galaxies, with the notable exception of the parameters that control the resolution of the simulation and the efficiency with which gas cools. 相似文献
19.