首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

2.
《Gondwana Research》2006,9(4):529-538
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.70330∼0.70555, 143Nd/144Nd = 0.51298∼0.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.61∼19.12, 207Pb/204Pb = 15.54∼15.69, 208Pb/204Pb = 38.98∼39.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.72∼18.03, 207Pb/204Pb = 15.44∼15.58, 208Pb/204Pb = 37.77∼38.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   

3.
A comparison of new and published geochemical characteristics of magmatism in the western and eastern Indian Ocean at the initial and recent stages of its evolution revealed several important differences between the mantle sources of basaltic melts from this ocean.
  1. The sources of basalts, from ancient rises and from flanks of the modern Central Indian Ridge within the western Indian Ocean contain an enriched component similar in composition to the source of the Réunion basalts (with radiogenic Pb and Sr and unradiogenic Nd), except for basalts from the Comores Islands, which exhibit a contribution from an enriched HIMU-like component.
  2. The modern rift lavas of spreading ridges display generally similar geochemical compositions. Several local isotopic anomalies are characterized by the presence of an EM2-like component. However, two anomalous areas with distinctly different enriched mantle sources were recognized in the westernmost part of the Southwestern Indian Ridge (SWIR). The enriched mantle source of the western SWIR tholeiites in the vicinity of the Bouvet Triple Junction has the isotopic ratios indicating a mixture of HIMU + EM2 in the source. The rift anomaly distinguished at 40° E displays the EM1 signature in the mantle source, which is characterized by relatively low 206Pb/204Pb (up to 17.0) and high 207Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr. This source may be due to mixing with material from the continental lithosphere of the ancient continent Gondwana. The material from this source can be distinguished in magmas related to the Mesozoic plume activity in Antarctica, as well as in basalts from the eastern Indian Ocean rises, which were formed by the Kerguelen plume at 100–90 Ma.
  3. The geochemical heterogeneities identified in the ancient and present-day magmatic products from the western and eastern Indian Ocean are thought to reflect the geodynamic evolution of the region. In the eastern part of the ocean, the interaction of the evolving Kerguelen plume with the rift zones produced magmas with specific geochemical characteristics during the early opening of the ocean; such a dispersion of magma composition was not recognized in the western part of the ocean.
  相似文献   

4.
We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation.  相似文献   

5.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

6.
Petrological and geochemical data obtained on Neogene magmatism restricted to a deep fault in Andree Land at Spitsbergen Island, which was related to the overall restyling of the Arctic territory at 25–20 Ma, indicate that the derivation of the Neogene magmas was significantly affected by the continental pyroxenite mantle. The Neogene basalts are noted for a radiogenic isotopic composition of Pb (207Pb/204Pb= 15.5–15.55, 206Pb/204Pb = 18.4–18.6, 208Pb/204 Pb = 38.4–38.6) and Sr(87Sr/86Sr = 0.7038–0.7048) at low 143Nd/144Nd = 0.5129. Melts of this type are the extremely enriched end member of the isotopic mixing of a depleted and enriched sources and determine a geochemical trend that passes through the compositions of alkaline magmas from Quaternary volcanoes at Spitsbergen and weakly enriched tholeiites of the Knipovich Ridge, which started to develop simultaneously with the onset of Neogene magmatism in the western part of Spitsbergen. The composition of the liquidus olivine (which is rich in NiO) indicates that melting occurred in the olivine-free mantle. Our data thus testify that a significant role in the genesis of the Neogene magmas was played by continental pyroxenite mantle.  相似文献   

7.
Magnesium isotopes are a useful tool for constraining the origin of basalts with EM-like isotopic signatures in relation to ancient subducted slabs and recycled materials incorporated in mantle plumes. In this study, we present new SrNdPbHf and Mg isotopic data that were used to determine the origin of the basalt on Hainan Island and investigate the EM mantle reservoir beneath the island. Cenozoic basalts from northern Hainan Island are mainly tholeiitic, with a small amount of alkaline basalts. The Hainan basalts exhibited depleted SrNd isotopic compositions and EM2-like Pb isotopic signatures. The δ26Mg values of the Hainan basalts ranged from ?0.40‰ to ?0.28‰. The origin of the low δ26Mg signature can be attributed to carbonate sediments from recycled oceanic slab. Hainan basalts show a negative concave curve relationship between 87Sr/86Sr and εNd values, a positive relationship between 206Pb/204Pb and 207Pb/204Pb values and exhibit an evolution trend from depleted mantle towards marine sediments. This indicates that Hainan Island basalts can be explained by the mixing between depleted mantle and marine sediments. Most Hainan basalts have higher K/U × 10?3 and Ba/Th ratios than primitive mantle (K/U × 10?3 ≈ 11.8, Ba/Th ≈ 83), moreover, display highly correlated K/U × 10?3 and Ba/Th compositions with low-pressure (6–8 GPa) carbonated melt released from initial sediments. Therefore, we speculate that the primitive mantle peridotite, coupled with the low-pressure carbonated melt, ultimately became the mantle source of Hainan Island basalts.  相似文献   

8.
Recent statistical analyses on the isotopic compositions of oceanic, arc, and continental basalts have revealed that the Earth's mantle is broadly divided into eastern and western hemispheres. The present study aimed to characterize the isotopically defined east–west geochemical hemispheres using trace-element concentrations. Basalt data with Rb, Sr, Nd, Sm, Pb, Th, and U in addition to the isotopic ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were selected mostly from the GEOROC and PetDB databases. A total of 4787 samples were used to investigate the global geochemical variations. The results show that the wide trace-element variations are broadly explained by the melting of melt-metasomatized and fluid-metasomatized mantle sources. The larger amount of the fluid component derived from subducted plates in the eastern hemisphere than that in the western hemisphere is inferred from the basalts. These characteristics support the hypothesis that focused subduction towards the supercontinent created the mantle geochemical hemispheres.  相似文献   

9.
It has long been debated that the Dabie orogenic belt belongs to the North China or Yangtze craton. In recent years, eastern China has been suggested, based on the Pb isotopic compositions of Phanerozoic ore and Mesozoic granitoid K-feldspar (revealing the crust Pb) in combination with Meso-Cenozoic basalts (revealing the mantle Pb), being divided into the North China and Yangtze Pb isotopic provinces, where the crust and mantle of the Yangtze craton are characterized by more radiogenic Pb. In this sense, previous researchers suggested that the pro-EW-trending Dabie crogenic belt with less radiogenic Pb in the crust was part of the North China craton. In this paper, however, the Late Cretaceous basalts in the central and southern parts of the Dabie orogenic belt are characterized by some more radiogenic Pb (206Pb/204Pb=17.936−18.349,207Pb/204Pb=15.500−15.688,208Pb/204Pb=38.399−38.775) and a unique U-Th-Pb trace element system similar to those of the Yangtze craton, showing that the Mesozoic mantle is of the Yangtze type. In addition, the decoupled Pb isotopic compositions between crust and mantle were considerably derived from their rheological inhomogeneity, implying a complicated evolution of the Dabie orogenic belt. The study was funded by the National Natural Science Foundation of China (No. 49794043) and the Open Laboratory of Constitution, Interaction and Dynamics of the Crust-Mantle System, China.  相似文献   

10.
中国大陆新生代上地幔铅同位素特征   总被引:2,自引:0,他引:2  
收集了新生代(含少量晚中生代) 301件幔源玄武岩的Pb同位素数据, 编制了系统的Pb同位素变化趋势(等值线) 图件, 现仅提供“中国大陆新生代上地幔的206Pb/204Pb比值变化趋势图”.图件显示, Pb同位素在南北方向的差异比较显著, 南北的界线大体从合肥-郑州-银川-汗腾格里峰, 结合Nd同位素的资料, 以206Pb/204Pb比值为18~18.5作为分界, 以北小于18~18.5;以南大于该值.此外初步辨认出该时期存在3种类型的地幔: 造山带地幔、裂谷型地幔及“非典型地幔”.与依据不同时代、各种类型的样品铅同位素的比值, 统一编制的“中国大陆岩石圈206Pb/204Pb比值变化趋势图”进行比较, 显示出在东北的西北部的206Pb/204Pb比值、南北向东经104°附近的高206Pb/204Pb比值区是否存在、渤海周边Pb异常区的强度以及华南DUPAL异常区问题等方面都有区别, 表明晚中生代-新生代时期, 中国大陆进入了一个新的软流圈地幔对流体系, 近代地幔并没有完全继承老地幔的全部特征而是被注入了新的软流圈物质.此外, 两张趋势图都显示了南北分块的特征, 而东西向的系统变化, 仅在近代Pb比值趋势图中华南块体的东南沿海地区出现, 暗示太平洋板块俯冲对中国大陆的影响处于次要地位.   相似文献   

11.
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ∼100 km beyond the morphological hotspot track.  相似文献   

12.
The geochemical characteristics of primitive tholeiitic and alkaline volcanic rocks that erupted in the Plio-Pleistocene along fissures on the Hyblean plateau in Sicily (Italy) were used to constrain the mantle sources involved in the volcanic activity of this area of the Mediterranean. It is shown that some of the Hyblean plateau magmas with the most extreme isotopic compositions have combined radiogenic Nd, Sr and Pb, a feature that is distinct from the mixing end-members of the oceanic array. In addition, alkalinity in the basalts is found to be positively correlated with an increase in some HFSE ratios (e.g. Nb/Ta, Zr/Hf) and negatively correlated with ratios between HFSE and MREE (e.g. Ti/Eu), a characteristic that is attributed to a mantle source that has been modified by a carbonatitic metasomatic agent. This metasomatic enrichment had the effect of increasing the U/Pb of portions of the lower lithosphere, possibly by adding phases such as sodic pyroxene and apatite to the basalt-depleted lithosphere. It is suggested that rock types that formed by melting metasomatized portions of lithosphere-asthenosphere boundary affected by this recent enrichment in U/Pb fall along a trend with a shallow slope in a plot of 206Pb/204Pb versus 207Pb/204Pb, and have Nd isotopic compositions that are as radiogenic as present day MORB. The isotopic compositions and trace-element concentrations of the Hyblean plateau basalts are, therefore, mostly consistent with the interaction of a MORB-type mantle source with a young lithosphere that was probably formed in the Phanerozoic and metasomatized by CO2-rich fluids, possibly during the Jurassic. The absence of a geochemical component indicative of involvement of older Proterozoic lithosphere and continental crust in the evolution of these magmas distinguishes them from those erupted along the margins of the Tyrrhenian sea, and supports the suggestion that at least portions of the lithosphere underneath Sicily have oceanic affinity and may be genetically related to the adjacent Ionian abyssal plain. Received 4 June 1997 / Accepted 25 November 1997  相似文献   

13.
浙江东南部晚中生代上、下火山岩系(以下简称上、下岩系)中均有玄武岩产出,本文对这些玄武岩分别进行了元 素地球化学和Sr-Nd-Pb同位素研究。不同岩系玄武岩的主量元素均表现出富碱、富Al等特征。但微量元素存在差异,下岩 系天台和青田样品具有轻稀土富集以及Ba, Pb和Sr富集,Eu负异常,Nb, Ta, Zr和Hf亏损的特征。上岩系玄武岩的元素特征 也有差别,永嘉花坦、宁波玄坛地、新昌镜岭和永嘉镜架山等地样品的元素特征表现出的性质与下岩系样品相似,武义玄 武岩样品没有Ta, Nb亏损特征,金衢盆地玄武岩的元素特征则介于两者之间。对应的,这些玄武岩样品的同位素组成也有 明显差异,下岩系玄武岩的初始同位素组成范围为 I Sr=0.70850~0.70897,εN(d t) = -5.6~-4.1,(206Pb/204Pb) i =18.21~18.38,(207Pb/204Pb) i =15.55~15.58,(208Pb/204Pb) i =38.26~38.49,接近下岩系中酸性岩浆岩的范围,反映了下地壳物质对其岩浆源区的显著影响。上岩系玄武岩有明显差异,表现出与元素特征对应的分组现象。其中永嘉花坦、宁波玄坛地、新昌镜岭和永嘉镜架山样品 I Sr = 0.70734~0.70936, εN(d t)= -7.1~-2.1,( 206Pb/204Pb) i =18.01~18.40,( 207Pb/204Pb) i = 15.54~15.62,( 208Pb/204Pb) i=37.99~38.62, 具有富集特征, 可能来自活动大陆边缘; 而武义和金衢盆地样品的 I Sr=0.70533~0.70589, εNd( t) =0.4~3.3,(206Pb/204Pb) i =17.23~18.11,( 207Pb/204Pb) i =15.46~15.53,( 208Pb/204Pb) i =36.91~38.43,具有类似OIB特征,趋向亏损地幔端元。上下岩系玄武岩的元素和同位素组成的研究表明,玄武岩的物质来源有较明显的差别,且表现出随时间变化的特征。其中下岩系玄武岩源区中可能有古老岩石圈地幔、下地壳物质和俯冲蚀变洋壳物质的贡献,而上岩系中玄武岩源区有可能是类似下岩系玄武岩性质的岩石圈、软流圈地幔和下地壳物质等的贡献。浙东南晚中生代岩石圈演化的动力学过程可能与太平洋板块俯冲有关,但不能排除岩石圈地幔拆沉的影响,具体的讨论还需要更多的岩石学和/或地幔包体资料的补充。  相似文献   

14.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

15.
冈底斯-念青唐古拉成矿带矿床成矿元素组合由南向北存在着Cu-Au、Cu-Mo向Pb-Zn-Cu-Fe、Pb-Zn过渡的变化规律,但引起该变化规律的原因目前少研究。本文通过对成矿带典型矿床Pb同位素特征较为系统的总结,并结合成矿年代学和区域构造演化研究成果,从成矿物质来源的角度对该分带性进行了初步探讨。研究表明成矿带由南到北成矿物质来源存在着差异:最南端Cu-Au矿床Pb同位素组成具幔源特征(207Pb/204Pb和208Pb/204Pb平均值分别为15.490和38.016),反映成矿物质来自于俯冲过程中的交代地幔楔;最北端的Pb-Zn矿床Pb同位素组成与念青唐古拉群基底片麻岩相近(207Pb/204Pb和208Pb/204Pb分别变化于15.641~15.738和38.976~39.362),反映成矿物质来自于基底片麻岩。Pb-Zn-Cu-Fe矿床Pb同位素组成介于幔源Pb和上地壳Pb之间,且具混合线特征,反映了同碰撞期成矿物质同时从俯冲板片和念青唐古拉基底片麻岩活化的混源模式;而Cu-Mo矿床不具混合线特征的造山带Pb同位素组成,反映了成矿物质来源于俯冲阶段楔形地幔部分熔融并底侵到地壳底部与地壳发生物质交换后所形成的新生下地壳源区。甲马Cu多金属矿床Pb同位素组成具幔源和造山带两个端元,推测除新生下地壳源区提供成矿物质外,叶巴组火山岩也提供了部分成矿物质。由南向北成矿物质来源的差异很大程度上与板片俯冲的"距离效应"有关,正是由于成矿物质来源的差异导致成矿带成矿元素分带性的形成。  相似文献   

16.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

17.
山东济阳拗陷第三纪玄武岩的铅同位素研究   总被引:8,自引:1,他引:8       下载免费PDF全文
山东济阳拗陷第三玄武岩的Pb同位素组成变化明显:^206Pb/^204Pb值为16.864-18.361,^207Pb/^204Pb值为15.268-15.599,^208Pb/^204Pb值为36.770-39.118。在Pb-Pb和Pb-Sr图上,所有数据点形成良好的线性关系,而且都分布于DMM、EMⅠ和EMⅡ3个地幔端员组分之间。这些特征表明,同位素组成的明显变化应主要归因于玄武岩浆形成幔源区中不同端员组分之间的混合作用,地壳混染作用影响不明显。  相似文献   

18.
The Macquarie Arc of New South Wales hosts several major Au and Cu deposits. We present new Pb isotope results for Cadia, the Copper Hill, Little Copper Hill and Cowal deposits, along with data from the CSIRO database. The results generally plot close to established mantle growth curves and are similar to oceanic basalts. Data for individual deposits mostly have Pb model ages consistent with independent age constraints on mineralization. Intrusions associated with the Early Silurian mineralization at Cadia and Goonumbla have narrow and distinct Pb isotope signatures that we interpret to be the result of partial melting of already LILE-enriched mantle-like sources. The data suggest that deposits of the Macquarie Arc derived Pb from one or more long-lived mantle-like Pb isotope reservoirs without significant contributions of crustal Pb prior to the Benambran Orogeny.Data for the Copper Hill deposits includes unradiogenic, possibly old Pb and supports previous workers who suggested that old MORB-like basalts may occur at depth in the area. The Peak Hill deposit has the most unradiogenic signature and has the lowest 208Pb/204Pb and 207Pb/204Pb. These signatures closely match Cambrian MORB-like basalts in the Koonenberry Belt and are unlike Cambrian mafic rocks in Victoria. Similar rocks could form part of the substrate to other parts of the Macquarie Arc.  相似文献   

19.
本文对中国东南沿海不含幔源包体的中生代玄武岩和含幔源包体的新生代玄武岩进行了微量元素和Nd-Sr-Pb同位素对比研究。中生代玄武岩呈Ta、Nb和Hf负异常,低Ce/Pb、Nb/U比值和高La/Nb比值,与岛弧火山岩和陆壳岩石的微量元素特征相类似,说明在岩浆生成和上升过程中,幔源组分受到了陆壳组分的混染。新生代玄武岩呈Ta、Nb正异常和Pb负异常,高Ce/Pb、Nb/U比值和低La/Nb比值,与海岛玄武岩(OIB)相类似,Nd-Sr同位素成分与夏威夷玄武岩类似,因而它们未受明显的陆壳混染。143Nd/144Nd与206Pb/204Pb之间的负相关关系和87Sr/86Sr与206Pb/204Pb之间的正相关关系说明本区新生代玄武岩起源于中等亏损程度的软流圈地幔,并与EMII富集地幔组分发生了混合。  相似文献   

20.
The paper considers the results of high-precision Pb–Pb isotopic analysis of 120 galena samples from 27 Au and Ag deposits of the South Verkhoyansk Synclinorium (SVS) including large Nezhdaninsky deposit (628.8 t Au). The Pb isotopic composition is analyzed on a MC-ICP-MS NEPTUNE mass-spectrometer from solutions with an error of no more than ±0.02% (2σ). Four types of deposits are studied: (i) stratified vein gold–quartz deposits (type 1) hosted in metamorphosed Upper Carboniferous–Lower Permian terrigenous rocks and formed during accretion of the Okhotsk Block to the North Asian Craton synchronously with dislocation metamorphism and related granitic magmatism; (ii) vein gold–quartz (Nezhdaninsky type) deposits also hosted in Lower Permian metasedimentary rocks; (iii) Au–Bi deposits localized at the contact zones of the Late Cretaceous granitic plutons; and (iv) Sn–Ag polymetallic deposits related to granitic and subvolcanic rocks of the Okhotsk Zone of the SVS. The deposits of types 2, 3, and 4 are postaccretionary. The general range of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios is 18.1516–18.5903 (2.4%), 15.5175–15.6155 (0.63%), and 38.3010–39.0481 (2.0%), respectively. In 206Pb/204Pb–207Pb/204Pb and 206Pb/204Pb–208Pb/204Pb diagrams, the data points of Pb isotopic compositions of all deposits occupy restricted, partly overlapping areas along a general elongated trend. The various SVS Au–Ag deposits can be classified according to the Pb isotopic composition in accordance with all three Pb ratios. Deposits of the same type show distinct Pb isotopic compositions that strongly exceed the scale of analytical error (±0.02%). The differences in Pb isotopic composition within specific deposits are low and subordinate and have little effect on variations in the Pb isotopic composition of the SVS deposits. The μ2 values (Stacey–Kramers model), which characterize the 238U/204Pb ratios of ore lead sources of the SVS deposits, widely vary from 9.7 to 9.38. The ω2 values (232Th/204Pb) are 39.82–36.61, whereas the Th/U ratios are 4.04–3.86. The content of all three radiogenic Pb isotopes and μ2 values of feldspars from SVS intrusive rocks are strongly distinct from those of galena of stratified gold–quartz and vein gold–quartz deposits and are identical to Pb of galena from Au–Bi and Sn–Ag polymetallic deposits, indicating a mostly magmatic origin for the Pb of these deposits. Detailed isotopic study of the Nezhdaninsky deposit shows different Pb isotopic composition of two consecutive mineral assemblages (gold–sulfide and Ag polymetallic): ~0.30, ~0.07, and ~0.22% for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively. These differences are interpreted as a result of involvement of at least two metal sources during the evolution of an ore-forming system: (i) host Lower Permian terrigenous rocks and (ii) a magmatic source similar in Pb isotopic composition to that of Sn–Ag polymetallic deposits. The Pb isotopic composition and μ2 and Th/U values show that lead of stratified gold–quartz deposits combines isotopic tracers of lower and upper crustal sources (Upper Carboniferous–Lower Permian terrigenous rocks), lead of which was mobilized by ore-bearing fluids. The high 208Pb/206Pb ratios and Th/U evolutionary parameter are common to all Pb isotopic composition of all studied Au–Ag deposits and SVS Cretaceous intrusive rocks and indicate that Pb sources were depleted in U relative to Th. Taking into account the structure of the region and conceptions on its evolution, we can suggest that the magma source was related to lower crustal subducted rocks of the Archean (~2.6 Ga) North Asian Craton and the Okhotsk terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号