首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Antarctic ice cap is the largest ice sheet of modern times. It is of considerable importance to predict the sea level variability due to the associated changes in ice volume. We present the results of a simple grounded ice sheet model, developed from Oerlemans [Oerlemans, J., 2002. Global dynamics of the Antarctic Ice Sheet, Climate Dynamics 19, 85–93.], in which the net oceanic evaporation influences the ice cap volume in two ways, through changes in: (i) the accumulation rate, and (ii) the mean sea level. The net evaporation changes are driven by the sea surface temperature (SST) anomaly time series of Howard [Howard, W.R., 1997. A warm future in the past, Nature, 388, 418–419.] for the subantarctic Southern Ocean over the period 220 kyr to the present. The effect of the waxing and waning of the northern hemisphere ice sheets is integrated into the model using an independent model, in which ice melting depends on the SST anomaly and ice calving depends on the sea level anomaly. A series of analytical expressions are derived for the related properties of the coupled ocean–ice system applicable over time scales of 100 kyr, which show, in particular, that the Antarctic ice cap volume changes are due mainly to the effects of the northern hemisphere ice sheets on sea level (which influences ice calving), rather than directly to changes in SST, and hence the ice cap volume is greatest during interglacial periods. This conclusion, which is independent of the specification of the ice melting regime for the northern hemisphere ice sheets, strongly suggests that the changes in accumulation flux estimated from the Vostok proxy temperature data and used in other studies of the Antarctic mass balance have been overestimated. A simple expression is also presented for the lag of ice cap volume to SST, and it is found that the predictions for the mean sea level variability are similar to observations for a melting flux of the northern hemisphere ice sheets about twice their accumulation flux due to the net oceanic evaporation, except during major deglaciations when these two fluxes appear to be of similar magnitude.  相似文献   

2.
Role of Arctic sea ice in global atmospheric circulation: A review   总被引:6,自引:0,他引:6  
Formed by the freezing of sea water, sea ice defines the character of the marine Arctic. The principal purpose of this review is to synthesize the published efforts that document the potential impact of Arctic sea ice on remote climates. The emphasis is on atmospheric processes and the resulting modifications in surface conditions such as air temperature, precipitation patterns, and storm track behavior at interannual timescales across the middle and low latitudes of the Northern hemisphere during cool months. Addressed also are the theoretical, methodological, and logistical challenges facing the current observational and modeling studies that aim to improve our awareness of the role that Arctic sea ice plays in the definition of global climate. Moving towards an improved understanding of the role that polar sea ice plays in shaping the global climate is a subject of timely importance as the Arctic environment is currently undergoing rapid change with little slowing down forecasted for the future.  相似文献   

3.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   

4.
Abrupt climate change revisited   总被引:1,自引:0,他引:1  
Taken together, evidence from east Greenland's mountain moraines and results from atmospheric models appear to provide the answer to a question which has long dogged abrupt climate change research: namely, how were impacts of the Younger Dryas (YD), Dansgaard–Oeschger (D–O) and Heinrich (H) events transmitted so quickly and efficiently throughout the northern hemisphere and tropics? The answer appears to lie in extensive winter sea ice formation which created Siberian-like conditions in the regions surrounding the northern Atlantic. Not only would this account for the ultra cold conditions in the north, but, as suggested by models, it would have pushed the tropical rain belt southward and weakened the monsoons. The requisite abrupt changes in the extent of sea ice cover are of course best explained by the turning on and turning off of the Atlantic's conveyor circulation.  相似文献   

5.
Increased melting on glaciers and ice sheets and rising sea level are often mentioned as important aspects of the anticipated greenhouse warming of the earth's atmosphere. This paper deals with the sensitivity of Greenland's ice mass budget and presents a tentative projection of the Greenland component of future sea level rise for the next few hundred years. To do this, the ‘Villach II temperature scenario’ is prescribed,output from a comprehensive mass balance model is used to drive a high-resolution 3-D thermomechanic model of the ice sheet.The mass balance model consists of two parts: the accumulation part is based on presently observed values and is forced by changes in mean anr tempeerature. The ablation model is based on the degree-day method and accounts for daily and annual temperature cycle, a different degree-day factor for ice and snow melting and superimposed ice formation. Under present-day climatic conditions, the following total mass balance results (in ice equivalent per years): 599.3 × 109 m3 of accumulation, 281.7 × 109m3 of runoff assuming a balanced budget, 317.6 × 109m3 of iceberg calving. A 1K uniform warming is then calculated to increase the runoff by 119.5 × 109 m3. Since accumulation also increases by 32 × 109 m3, this leads to reduction of the total mass balance by 887.5 × 109 m3 of ice, corresponding to a sea level rise of 0.22 mm/yr. For temperature increase larger than 2.7 K, runoff, exceeds accumulation, and if ice sheet dynamics were to remain unchanged, this would add an extra amount of 0.8 mmyr to the worl's oceans.Imposing the Villach II scenario (warming up to 4.23 K) and accumulating mass balance changes forward in time (static response) would then result in a global sea level rise of 7.1 cm by 2100 AD, but this figure may go up to as much as 40 cm per century in case the warming is doubled. In a subsequent dynamic model involving the ice flow, the ice sheet is found to produce a counteracting effect by dynamically producing steeper slopes at the margin, thereby reducing the area over which runoff can take place. This effect is particularly apparent in the northeastern part of the ice sheet, and is also more pronounced for the smaller temperature perturbations. Nevertheless, all these experiments certainly highlight the vulnerability of the Greenland ice sheet with respect to a climatic warming.  相似文献   

6.
This paper reports on mapping of water frost and ice on Mars, in the range of latitudes between 30°S and 30°N. The study has been carried out by analysing 2485 orbits acquired during almost one martian year by the Mars Express/OMEGA imaging spectrometer. Water frost/ice is identified by the presence of ∼1.5 μm, ∼2 μm and ∼3.0 μm absorptions. Although the orbits analysed in this study cover all seasons, water frost/ice is observed only near the aphelion seasons, at Ls = 19° and at Ls = 98-150°. Water frost/ice is detected mainly on the southern hemisphere between 15°S and 30°S latitude while it has not been identified within 15°S-15°N. In the northern hemisphere, the water frost/ice detection is complicated by the presence of clouds. Usually, water frost/ice is found in shadowed areas, while in few cases it is exposed to the sunlight. This indicates a clear relationship with the local illumination conditions on the slopes which favour the water frost/ice deposition on the surface when the temperatures are very low. OMEGA observations span from 10 to 17 LT and the frost/ice is detected mainly between 15 and 16 LT, with practically no detection before 13 LT. We think this is due to the fact that the 10-12 LT observations occur at large distances and it is not a local time effect. A thermal model is used to determine the deposition conditions on the sloped surfaces where water frost/ice has been found. There, daily atmospheric saturation does not occur on pole facing 10-25° slopes with current water vapour abundances but only by assuming values greater than 40 pr μm. Moreover, the water frost/ice is not detected during the northern winter, even if the thermal model foresees daily saturation on 25° slopes.  相似文献   

7.
The Greenland ice sheet through the last glacial-interglacial cycle   总被引:1,自引:0,他引:1  
The evolution of the Greenland ice sheet during the last 150,000 years, in response to a climate history derived from a Greenland ice-margin oxygen-18 record, is simulated by means of a three-dimensional, time-dependent ice-sheet model. The calculations indicate that the ice sheet displayed considerable thinning and ice-margin retreat during the last interglacial (the Eemian) and during a warm interstadial c. 100,000 yr B.P., resulting in a splitting up of the ice sheet into a central-northern and a southern part. However, the ice sheet in Central Greenland survived the warm stages with almost unchanged surface elevations as compared with the present.  相似文献   

8.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   

9.
The effect of mass balance variations on changes in surface elevation of the Greenland ice sheet is examined in connection with the rise in sea level that will be caused by increased melting. Changes in surface elevation of several metres (of either sign) can occur in the ablation area of the ice sheet over a period of a few years as a result of random ablation forcing without being evidence of change in mean climate. Similar, but smaller, changes can occur in the accumulation area due to accumulation forcing. The ablation area of the ice sheet probably thickened from the mid-1970s to the mid-1980s as a result of lower ablation in that period but thinned again in the late 1980s as a result of higher ablation then. There is no evidence of any present trend of increased melting. Future climate warming will involve an accelerated thinning of the ablation area that could be detected in 1–2 decades against the background of natural fluctuations in surface elevation.  相似文献   

10.
Abstract— This paper presents a short overview of the fracture of water ice Ih. Topics include the ductile‐to‐brittle transition, tensile and compressive strength, compressive failure under multiaxial loading, compressive failure modes, and brittle failure on the geophysical scale (Arctic sea ice cover, Europa's icy crust). Emphasis is placed on the underlying physical mechanisms. Where appropriate, comment is made on the formation of high‐latitude impact craters on Mars.  相似文献   

11.
The sensitivity of the ocean circulation to changes in North Atlantic surface fluxes has become a major factor in explaining climate variability. The role of the Antarctic Bottom Water in modulating this variability has received much less attention, limiting the development of a complete understanding of decadal to millennial time-scale climate change. New analyses indicate that the southern deepwater source may change dramatically (e.g., experience a decrease of as much as two thirds during last 800 years). Such change can substantially alter the ocean circulation patterns of the last millennium. Additional analyses indicate that the Southern Hemisphere led the Northern Hemisphere changes in some of the glacial cycles of Pleistocene, implying a seesaw-type oscillation of the global ocean conveyor. The potential for melting of sea ice and ice sheets in the Antarctica associated with global warming can cause a further slowdown of the southern deepwater source. These results demand an assessment of the role of the Southern Ocean in driving changes of the global ocean circulation and climate. Systematic model simulation targeting the ocean circulation response to changes in surface salinity in the high latitudes of both Northern and Southern Hemispheres demonstrate that meltwater impacts in one hemisphere may lead to a strengthening of the thermohaline conveyor driven by the source in the opposite hemisphere. This, in turn, leads to significant changes in poleward heat transport. Further, meltwater events can lead to deep-sea warming and thermal expansion of abyssal water, that in turn cause a substantial sea-level change even without a major ice sheet melting.  相似文献   

12.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

13.
Our work was inspired by the recent brightening of Comet 17P/Holmes. The recently observed increase in brightness of this comet was correlated with emission of dust, probably larger in mass than the dust mantle of the nucleus. We analyzed the hypothesis that the comet can eject a large mass of dust due to non-uniform crystallization of amorphous water ice. For this purpose, we simulated the evolution of a model nucleus on the orbit of Comet 17P/Holmes. The nucleus is composed of water ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes in the dust mantle thickness, and changes in the nucleus orientation in space. Our computations indicate that: (i) ejection of the dust cover triggers crystallization of ice independently on the material properties of the nucleus; (ii) moderate changes in the nucleus orientation (∼50°) may result in an acceleration of the crystallization of ice in the northern hemisphere, while a rather large change in the orientation (∼120°) is needed to cause a significant jump of the crystallization front in the southern hemisphere, where the emission of dust during the recent brightening was strongest. We investigated the possible reason for an explosion and we have found that the crystallization of the water ice itself is probably not sufficient.  相似文献   

14.
Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40–45°) cold, pole-facing slopes are strongly preferred sites for ice accumulation, while at higher latitudes (>40–45°), slopes of all orientations show signs of ice accumulation and ice-related flow. This latitudinal onset of concentric flow of ice within craters in each hemisphere correlates directly with the lowest latitudes at which typical pedestal craters have been mapped. Taken together, these observations demarcate an important latitudinal boundary that partitions each hemisphere into two zones: (1) poleward of ~45°, where net accumulation of ice is interpreted to have occurred on all surfaces, and (2) equatorward of ~45°, where net accumulation of ice occurred predominantly on pole-facing slopes. These results provide important constraints for deciphering the climatic conditions that characterized Mars during periods of extensive Amazonian non-polar glaciation.  相似文献   

15.
Rapidly-flowing sectors of an ice sheet (ice streams) can play an important role in abrupt climate change through the delivery of icebergs and meltwater and the subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during the Late Pleistocene and whose provenance has been linked to source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf suggests that it extended along M'Clure Strait and was grounded at the shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the source area of 4 (possibly 5) major ice export events recorded in core PS1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at 12.9, 15.6, 22 and 29.8 ka (14C yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for the cause of the North Atlantic's Heinrich events and hints at the possibility of a pan-ice sheet response.  相似文献   

16.
The Pliocene epoch represents an important transition from a climate regime with high-frequency, low-amplitude oscillations when the Northern Hemisphere lacked substantial ice sheets, to the typical high-frequency, high-amplitude Middle to Late Pleistocene regime characterized by glacial—interglacial cycles that involve waxing and waning of major Northern Hemisphere ice sheets. Analysis of middle Pliocene (3 Ma) marine and terrestrial records throughout the Northern Hemisphere forms the basis of an integrated synoptic Pliocene paleoclimate reconstruction of the last significantly warmer than present interval in Earth history. This reconstruction, developed primarily from paleontological data, includes middle Pliocene sea level, vegetation, land—ice distribution, sea—ice distribution, and sea-surface temperature (SST), all of which contribute to our conceptual understanding of this climate system. These data indicate middle Pliocene sea level was at least 25 m higher than present, presumably due in large part to a reduction in the size of the East Antarctic Ice Sheet. Sea surface temperatures were essentially equivalent to modern temperatures in tropical regions but were significantly warmer at higher latitudes. Due to increased heat flux to high latitudes, both the Arctic and Antarctic appear to have been seasonally ice free during the middle Pliocene with greatly reduced sea ice extent relative to today during winter. Vegetation changes, while more complex, are generally consistent with marine SST changes and show increased warmth and moisture at higher latitudes during the middle Pliocene.  相似文献   

17.
Expansion and contraction of desert margins around the globe have been inferred from a variety of proxy data and have since been linked, particularly in northern China and in the sub-Sahel, to changes in freshwater flux, vegetation cover, sea surface temperatures and, perhaps most importantly, monsoon circulations. We present a direct comparison of results from numerical general circulation model experiments for the mid-Holocene and for the Last Glacial Maximum (LGM) with the climatic conditions that have been inferred from loess–paleosol sequences taken from the Chinese Loess Plateau.During the mid-Holocene in northern China, the northwestward migration of the southeast desert margin that has been suggested by grain size analysis is also expressed in the model results. There is a statistically significant wetting of the Plateau region, and increased soil moisture is a consequence of an enhanced summer monsoon whose latent heat release deepens the cyclonic Tibetan low and brings increased low-level convergence and precipitation to the area. North of the desert region, this circulation dries the soil through enhanced atmospheric subsidence, although the northern margin of the desert does not migrate significantly.Expansion of the desert margin toward the southeast at the LGM is small, but there is a statistically significant drying of the Plateau. The local hydrological cycle is reduced, and there is an increase in large-scale atmospheric subsidence over the region that is caused by the presence of the Fennoscandian ice sheet upwind. Model results therefore suggest that, in addition to local micro- and mesoclimatic conditions, regional effects, such as monsoon circulations and distal orography, are also important factors in determining the location of desert margins.  相似文献   

18.
Huiqun Wang 《Icarus》2007,189(2):325-343
Data from the third Mars Global Surveyor (MGS) mapping year (MY 26, 2003-2005) are used to investigate dust storms originating in the northern hemisphere. Flushing dust storms, which originate as frontal dust storms at the northern polar vortex edge and propagate southward through topographic channels, are observed immediately before and after a quiescent period that occurs around the northern winter solstice (240°<Ls<300°). Both the pre- and post-solstice active periods can be further divided into two sub-periods. The most vigorous of these flushing storms occurred during Ls 210-220° and Ls 310-320°. The lifted dust crossed the equator and accumulated in the southern hemisphere. These major dust storms enhanced the Hadley circulation and suppressed the lower-level baroclinic eddies in the northern mid and high latitudes. The 2-3 sol wave number m=3 traveling waves show the best correlation with flushing dust storms and can combine with other wave modes to produce storm tracks and fronts within individual sub-periods.  相似文献   

19.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

20.
The neutral gas temperature and circulation of the thermosphere are calculated for December solstice conditions near solar cycle maximum using NCAR's thermospheric general circulation model (TGCM). High-latitude heat and momentum sources significantly alter the basic solar-driven circulation during solstice. At F-region heights, the increased ion density in the summer hemisphere results in a larger ion drag momentum source for the neutral gas than in the winter hemisphere. As a result there are larger wind velocities and a greater tendency for the neutral gas to follow the magnetospheric convection pattern in the summer hemisphere than in the winter hemisphere. There is about three times more Joule heating in the summer than the winter hemisphere for moderate levels of geomagnetic activity due to the greater electrical conductivity in the summer E-region ionosphere.

The results of several TGCM runs are used to show that at F-region heights it is possible to linearly combine the solar-driven and high-latitude driven solutions to obtain the total temperature structure and circulation to within 10–20%. In the lower thermosphere, however, non-linear terms cause significant departures and a linear superposition of fields is not valid.

The F-region winds at high latitudes calculated by the TGCM are also compared to the meridional wind derived from measurements by the Fabry-Perot Interferometer (FPI) and the zonal wind derived from measurements by the Wind and Temperature Spectrometer (WATS) instruments onboard the Dynamics Explorer (DE−2) satellite for a summer and a winter day. For both examples, the observed and modeled wind patterns are in qualitative agreement, indicating a dominant control of high latitude winds by ion drag. The magnitude of the calculated winds (400–500 m s−1) for the assumed 60 kV cross-tail potential, however, is smaller than that of the measured winds (500–800 m s−1). This suggests the need for an increased ion drag momentum source in the model calculations due to enhanced electron densities, higher ion drift velocities, or some combination that needs to be further denned from the DE−2 satellite measurements.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号