首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steel caging technique is commonly used for the seismic strengthening of reinforced concrete (RC) columns of rectangular cross‐section. The steel cage consists of angle sections placed at corners and held together by battens at intervals along the height. In the present study, a rational design method is developed to proportion the steel cage considering its confinement effect on the column concrete. An experimental study was carried out to verify the effectiveness of the proposed design method and detailing of steel cage battens within potential plastic hinge regions. One ordinary RC column and two strengthened columns were investigated experimentally under constant axial compressive load and gradually increasing reversed cyclic lateral displacements. Both strengthened columns showed excellent behavior in terms of flexural strength, lateral stiffness, energy dissipation and ductility due to the external confinement of the column concrete. The proposed model for confinement effect due to steel cage reasonably predicted moment capacities of the strengthened sections, which matched with the observed experimental values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The present paper proposes equivalent stiffness and energy dissipation properties of reinforced concrete hollow bridge piers to be used in the context of response spectrum performance based assessment and design. The work is carried out by performing parametric numerical analysis using a 2D fibre model calibrated against experimental results and by varying the longitudinal steel reinforcement ratio, height over width ratio, normalised axial force, level of confinement and concrete class of a rectangular hollow section reinforced with Tempcore B500C steel. The results of the analysis are given in the form of charts and closed form expressions for the yield curvature and moment, ultimate ductility, post yielding stiffness ratio and energy dissipated of the section, and are translated to the member level through the plastic hinge length approach. Likewise, the parameters of a Takeda model derived from the parametric analysis are given for use in nonlinear time history analysis.  相似文献   

3.
The steel tube‐reinforced concrete (ST‐RC) composite column is a novel type of composite column, which consists of a steel tube embedded in RC. In this paper, the seismic behavior of ST‐RC columns is examined through a series of experiments in which 10 one‐third scale column specimens were subjected to axial forces and lateral cyclic loading. The test variables include the axial force ratio applied to the columns and the amount of transverse reinforcement. All specimens failed in a flexural mode, showing stable hysteresis loops. Thanks to the steel tube and the high‐strength concrete it is filled with, the ST‐RC column specimens had approximately 30% lower axial force ratios and 22% higher maximum bending moments relative to the comparable RC columns when subjected to identical axial compressive loads. The amount of transverse reinforcement made only a small difference to the lateral load‐carrying capacity but significantly affected the deformation and energy dissipation capacity of the ST‐RC columns. The specimens that satisfied the requirements for transverse reinforcement adopted for medium ductile RC columns as specified by the Chinese Code for Seismic Design of Buildings (GB 50011‐2010) and EuroCode 8 achieved an ultimate drift ratio of around 0.03 and a displacement ductility ratio of approximately 5. The design formulas used to evaluate the strength capacity of the ST‐RC columns were developed on the basis of the superposition method. The predictions from the formulas showed good agreement with the test results, with errors no greater than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
为探究局部锈蚀矩形截面钢筋混凝土(RC)桥墩重度震损加固后的抗震性能,本文对拟静力破坏后的6个矩形截面RC桥墩试件进行扩大截面加固。通过加载试验,对加固桥墩试件从破坏形态、滞回特性、水平承载力、位移延性、侧向刚度以及耗能等方面进行了系统分析。结果表明:相比于普通箍筋,横向施加预应力的改进扩大截面加固方式对破坏后桥墩试件的抗震性能修复成效更佳;在同等位移幅值下,锈蚀率不断增大,桥墩试件抗震性能呈现逐渐降低的趋势;钢筋锈蚀位置上移,加固后桥墩试件的抗震性能提升;轴压比加大,加固后桥墩试件承载力和侧向刚度增大,但延性降低。  相似文献   

5.
The seismic performance of two RC interior wide beam-column connections representative of existing frames designed and detailed according to past construction practices in the moderate-seismicity Mediterranean area was investigated experimentally. The specimens were subjected to axial loads, moderate levels of gravity loading and cyclic displacements up to failure. The specimens exhibited a “strong column-weak beam” type of flexural yielding mechanism. The wide beams did not reach the expected capacities corresponding to the formation of a full-width plastic hinge. The wide-beam longitudinal bars exhibited significant slippage, and the transverse beams underwent severe torsion cracking and even failure; this caused severe pinching in the load versus displacement hysteretic loops and exacerbated the intrinsic flexibility of this type of connection. The average drift ratios at first yielding of the wide beam longitudinal reinforcement and at failure were 2.7 and 4.5%, respectively. The displacement ductility ratio was about 2.8. The ultimate energy dissipation capacity of each specimen—obtained by dividing the total plastic strain energy by the product of the yield load and yield displacement—was approximately 9, which is about one fourth of the value recommended for providing adequate seismic performance. Finally, a simple approach is suggested for prediction of the bending capacity of existing connections.  相似文献   

6.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

7.
Poor performance of lightly reinforced and unconfined concrete structural walls have been observed in recent earthquake events. This research investigates the displacement capacity of such walls by comparing the results of a series of state-of-the-art finite element analyses for a range of different structural walls to that estimated using plastic hinge analyses. The common expressions used in estimating the yield curvature, yield displacement and plastic displacement are scrutinised for these types of walls. Some recommendations are given to improve the prediction of the displacement capacity of lightly reinforced and unconfined rectangular and C-shaped walls for flexural actions using a plastic hinge analysis. Importantly, a parameter has been recommended to be used in a “modified” approach for estimating the nominal yield displacement of lightly reinforced concrete walls. Different expressions are also recommended depending on the amount of longitudinal reinforcement used in the wall in comparison to that required to initiate secondary cracking. This is important for providing better estimations of the displacement capacity of RC structural wall buildings in low-to-moderate seismic regions such that vulnerability studies can be conducted.  相似文献   

8.
Following the 1995 Kobe earthquake, many RC bridge columns were demolished due to a residual drift ratio of more than 1.75 % even though they did not collapse. The residual drift ratio is a quantitative index for the performance objective of reparability in the bridge seismic design. Numerical models of the columns are built to study the factors that influence the residual displacement of RC bridge columns. In these models, both column bending and bar pulling out deformation are considered using the fiber column-beam element and zero-length section element, respectively. Then, nonlinear time history analyses are performed. The factors that influence column residual displacement, such as the characteristics of ground motion, the structural responses (the maximum lateral drift ratio and the displacement ductility factor), and the structural characteristics (the aspect ratio and the longitudinal reinforcement ratio) are investigated. It is found that the near-fault ground motion induces a larger residual drift ratio than the far-fault ground motion. The residual drift ratio becomes larger due to the increase of the maximum lateral drift ratio, the displacement ductility factor, and the aspect ratio. Further, a larger longitudinal reinforcement ratio can induce a larger residual drift ratio due to the contribution of the bar pulling out deformation.  相似文献   

9.
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio,shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.  相似文献   

10.
A non‐parametric empirical approach, called the conditional average estimator (CAE) method, has been applied for the prediction of the normalized lateral force–drift envelope of reinforced concrete (RC) rectangular columns, as well as their characteristic drifts (effective yield drift, capping drift and ultimate drift), and drift‐related parameters (the ratio between the effective yield drift and elastic drift, and two ductility measures). A subset of the PEER RC column database was used. Five input parameters were employed: axial load index, index related to confinement, shear span index, concrete compressive strength, and longitudinal reinforcement index. The results suggest that the relations between the input and output parameters are complex, and that it is difficult to isolate the influence of a single parameter. Nevertheless, some trends were observed. The axial load index is the most influential input parameter. All the results decrease with an increasing axial load index, whereas they increase with an increasing longitudinal reinforcement index. An increase in the index related to confinement results in increases in the ultimate drift and in ductility. The influence of the shear span index is the most complex. The influence of the concrete strength is small with the exception of two output parameters related to elastic drift, which substantially decrease with increasing strength. The dispersion of the results is relatively large. The results of the predictions can be used for mathematical modelling of moment–rotation backbone curves for plastic hinges, and for the estimation of the deformation capacity of columns in seismic performance assessments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
为研究空心桥墩的抗震性能及影响参数,对9个不同配筋率、配箍率和轴压比的试件进行振动台试验。研究了不同性能量化参数对破坏现象、加速度响应、动力放大系数、延性和耗能等的影响。结果表明:轴压比和配筋率较小时,裂缝开展较多且位置距墩底相对偏高。增大配筋率,加速度响应、动力放大系数和位移延性系数增大,耗能减小;轴压比的影响与配筋率相反。增大配箍率,加速度响应和动力放大系数减小,位移延性系数和试件耗能增大。可为矩形空心桥墩的抗震设计提供参考。  相似文献   

12.
钢筋混凝土圆形截面柱式桥墩抗震性能评价   总被引:4,自引:0,他引:4  
对4座典型的钢筋混凝土圆形截面双柱式桥墩,利用Priestley等建议的钢筋混凝土桥墩抗剪强度计算方法和型态描述方程,结合Rush-over方法进行了延性抗震能力评价。一般说来,纵桥向能够满足延性抗震要求,而横桥向一些配箍率较低的桥墩在地震中会发生脆性的弯剪破坏,其底部塑性铰将形成在柱基之中,部分桩基可能会遭受损害。  相似文献   

13.
This paper investigated the use of external steel jacketing for seismic retrofit of non‐ductile reinforced concrete (RC) bridge columns to prevent lap‐splice failure. Three 1/2.5‐scale specimens were tested under cyclic loads. The effectiveness of two types of steel jackets for improving the ductility and strength of specimens using inadequate transverse reinforcing and lap‐splice details were examined. An octagonal steel jacketing scheme for the seismic retrofitting of rectangular RC bridge columns was proposed. In addition, the methods for seismic retrofitting rectangular columns using elliptical steel jacketing were also critically tested. The test results indicated that the octagonal steel jackets can effectively provide confinement thereby mitigating failures as a result of inadequate transverse reinforcing and inadequate lap‐splices. Tests also confirmed that the ductility performance and the energy dissipation capacity of the specimens can be significantly improved by the octagonal steel jacket. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
我国铁路桥梁普遍采用少筋混凝土重力式桥墩(配筋率<0.5%),现有普通钢筋混凝土结构的延性抗震理论不适用于该类型桥墩。为了促进我国铁路重力式桥墩抗震理论的发展,详细论述了我国少筋混凝土重力式桥墩的研究现状和存在问题。首先,对少筋混凝土重力式桥墩的破坏特征及破坏机理进行了总结;其次,分析了各参数对少筋混凝土重力式桥墩抗震性能的影响;再次,对目前少筋混凝土重力式桥墩的抗震设计方法进行了汇总与分析;最后,对少筋混凝土重力式桥墩的数值分析模型进行了归纳与分析。通过对现有研究的汇总发现:目前对少筋混凝土重力式桥墩的试验研究主要以拟静力方法为主,还缺少振动台试验研究其动力状态下的破坏机理及抗震性能;少筋混凝土重力式桥墩的破坏机理及其与各影响因素之间的定量关系还不明确;已提出的少筋混凝土重力式桥墩的抗震设计方法存在塑性铰区计算不合理等问题,还需要进一步的完善。为少筋混凝土重力式桥墩抗震研究提供了方向。  相似文献   

15.
本文介绍了16根1/2比例的矩形钢管混凝土柱在常轴力和侧向低周反复荷载作用下的抗震性能试验研究,描述了构件的非线性发展过程及破坏形态,研究了不同试验参数(包括柱的轴压比、截面长宽比、含钢率、加载方向等)对矩形钢管混凝土柱抗震性能的影响。本文的工作可为矩形钢管混凝土结构的工程实践及相关标准的编制修订提供参考。  相似文献   

16.
Nine large‐scale beam specimens were constructed. Of which, one was used as the control, whereas the other eight ones were divided into four sets. Each set had two specimens and was subjected to accelerated corrosion using an imposed current for the same time interval. Following the corrosion, a specimen in each set was tested using cyclic loading to examine the seismic performance, whereas the other one was demolished to examine the extent of corrosion. Cyclic loading results indicated that with an increasing corrosion level, the ultimate drift, ductility, plastic rotation capacity, and energy dissipation of the beams initially increased and later decreased. The failure mode switched from flexural failure, largely owing to buckling of the longitudinal reinforcement to flexural‐shear failure, which is mainly caused by fracturing of the transverse reinforcement. Corrosion increased shear deformation and the spread of plasticity of the plastic hinge region. The residual flexural strength, as estimated by an empirical equation based on the maximum pit depth in the longitudinal reinforcement, closely corresponds to experimental values. Furthermore, the residual shear strength estimated based on the minimum reduced cross‐sectional area of transverse reinforcement correlates better with the experimental observations than that based on the weight loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure pattern and damage occurs mainly in the RC section with weak shear capacity in the transfer columns. There is a large difference in the bearing capacity and ductility of the transfer columns according to the test results, which indicates that the strengthening effect of diverse structural measures is quite different. The section ratio of I-section-encased steel and the axial compression ratio also have a great influence on the bearing capacity and ductility. Although the bearing capacity of transfer columns with additional longitudinal bars and additional X bars is relatively large, they have poor deformation capacity. Setting more stirrups along the columns is the best structural measure to enhance the seismic performance. The studs on the I-sectionencased steel by welding can help to complete the stress transfer between the steel and concrete, and avoid performance degradation of the two materials due to bonding failure.  相似文献   

18.
为明晰中空暗缝RC剪力墙抗剪机理和滞回性能,进行1榀1:3缩尺单层、单跨中空暗缝RC剪力墙板拟静力试验,得到了试件破坏模式、滞回曲线、骨架曲线、刚度退化、强度退化、延性和耗能能力.通过数值模拟分析了混凝土强度、中空暗缝厚度、缝间墙配筋率对剪力墙板水平抗剪承载力的影响.研究结果表明:试件滞回曲线呈捏缩状,耗能能力一般,但...  相似文献   

19.
整理了国内外相关规范与相关研究中对RC柱抗震性态划分方法与指标限值,发现均是针对未震损未加固的RC柱.以相关试验得到的未预损未加固、未预损直接加固、预损后再加固的RC柱骨架曲线为对象,直接套用现有针对未震损未加固RC柱的性态划分方法与指标限值进行划分,得到对应各抗震性态分隔点处的位移角限值,发现3类RC柱在相同位移角下...  相似文献   

20.
为研究钢筋混凝土框架柱的抗震性能,进行了矩形截面不等肢配箍混凝土框架柱在斜向水平荷载作用下的抗剪强度试验研究,对框架柱在斜向水平荷载作用下的受剪承载力进行有限元分析,并与试验结果进行比较,研究了两向不等肢配箍矩形截面柱在静载和低周反复荷载作用下双向受剪承载力的相关关系,推导了双向受剪承载力计算公式。研究结果表明,斜向水平荷载作用下,不等肢配箍混凝土框架柱双向受剪承载力的相关关系近似符合椭圆规律,为不等肢配箍混凝土框架柱的受剪承载力设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号