首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of gas-phase flow patterns have been discussed and observed in the in situ air sparging (ISAS) literature: bubble flow and air channels. A critical factor affecting the flow pattern at a given location is the grain size of the porous medium. Visualization experiments reported in the literature indicate that a change in the flow pattern occurs around 1 to 2 mm grain diameters, with air channels occurring below the transition size and bubbles above. Analysis of capillary and buoyancy forces suggests that for a given gas-liquid-solid system, there is a critical size that dictates the dominant force, and the dominant force will in turn dictate the flow pattern. The dominant forces, and consequently the two-phase flow patterns, were characterized using a Bond number modified with the porous media aspect ratio (pore throat to pore body ratio). Laboratory experiments were conducted to observe flow patterns as a function of porous media size and air flow rate. The experimental results and the modified Bond number analysis support the relationship of flow patterns to grain size reported in the literature.  相似文献   

2.
The basic physics of air flow through saturated porous media are reviewed and implications arc drawn for the practical application of air sparging. A conceptual model of the detailed behavior of an air sparging system is constructed using elements of multiphase flow theory and the results of recent experimental work. Implications of the conceptual model on air sparging topics are discussed. The meaning of radius of influence in the context of air sparging is found to be ambiguous. The hydrodynamic effects of air sparging such as mounding of ground water and flow impedance are explored. Limitations on rates of remediation and operational strategics for improving sparging effectiveness are examined.  相似文献   

3.
A Field and Laboratory Investigation of Air Fingering During Air Sparging   总被引:2,自引:0,他引:2  
Since the rejection of the bubble flow conceptual model for in situ air sparging, most practitioners have adopted the conceptual model of air channeling, which generally implies the development of widely spaced, discreet air channels that bypass large regions of the subsurface. While air channeling clearly develops in response to stratigraphic heterogeneity, the universality of widely spaced air channels in homogeneous media is not supported by available evidence. Air channeling results in low bulk air saturation due to bypassing, and field and laboratory measurements of air saturations and previously published studies were used to evaluate if air channeling is realistic. The results indicated that homogeneous coarse sands are prone to the development of air channeling, and that homogeneous fine sands show higher air saturations and are not prone to air channeling. Breakthrough air saturations, which represent the minimum air saturations, that will conduct air flow, of approximately 0.02 to 0.04 were observed in coarse sands. In contrast, breakthrough air saturations of 0.10 to 0.13 were observed in fine sands and medium sands. The transition between these behaviors falls at about 15 to 20 cm water air entry pressure. These result indicate that, at both the field and laboratory scale, coarse sands are more prone to air channeling and bypassing than fine sands. Additionally, the larger air gradients and capillary pressures in fine sands result in a less buoyancy-dominated flow pattern, with a larger lateral extent of air flow.  相似文献   

4.
Horizontal and Vertical Well Comparison for In Situ Air Sparging   总被引:1,自引:0,他引:1  
A laboratory study was conducted to determine the effectiveness ol vertical and horizontal well configurations for ground water remediation using in situ air sparging. A lexan lank was designed and constructed to allow both the visualization of air flow and quantitative measurement of the distribution of air flow. Two media, sand and glass beads. were tested with both Vertical and horizontal air sources. In each case, most of the air traveled through preferential channels as continuous flow rather than as discrete bubbles as reported in other studies. Liven though glass beads were selected to have the same grain-size distribution as the sand, air flow was quite different through the two media. Results show that glass beads are not a suitable material for modeling air flow through natural sediments. In this study, the horizontal well proved to be more effective than the vertical well by impacting more of the media with a uniform distribution of air throughout the media. The vertical well resulted in a nonuniform distribution of air flow with most of the air concentrated directly above the well.  相似文献   

5.
The migration and entrapment of dense nonaqueous phase liquids (DNAPLs) in aquifer formations is typically believed to be controlled by physical heterogeneities. This belief is based upon the assumption that permeability and capillary properties are determined by the soil texture. Capillarity and relative permeability, however, will also depend on porous medium wettability characteristics. This wettability may vary spatially in a formation due to variations in aqueous phase chemistry, contaminant aging, and/or variations in mineralogy and organic matter distributions. In this work, a two-dimensional multiphase flow simulator is modified to simulate coupled physical and chemical formation heterogeneity. To model physical heterogeneity, a spatially correlated permeability field is generated, and then related to the capillary pressure-saturation function according to Leverett scaling. Spatial variability of porous medium wettability is assumed to be correlated with the natural logarithm of the intrinsic permeability. The influence of wettability on the hysteretic hydraulic property relations is also modeled. The simulator is then employed to investigate the potential influence of coupled physical and chemical heterogeneity on DNAPL flow and entrapment. For reasonable ranges of wettability characteristics, simulations demonstrate that spatial variations in wettability can have a dramatic impact on DNAPL distributions. Higher organic saturations, increased lateral spreading, and decreased depth of infiltration were predicted when the contact angle was varied spatially. When chemical heterogeneity was defined by spatial variation of organic-wet solid fractions (fractional wettability porous media), however, the resultant organic saturation distributions were more similar to those for perfectly water-wet media, due to saturation dependent wettability effects on the hydraulic property relations.  相似文献   

6.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

7.
地震波传播激发的不同尺度的流固相对运动(宏观、中观和微观)是许多沉积岩地层中地震波频散和衰减的主要原因,然而野外观测和试验测量都难以对非均匀多孔介质孔隙压力弛豫物理过程进行精细刻画.通过数字岩石物理技术,本文建立了三个典型的数字岩心分别用于表征孔隙结构、岩石骨架和斑状饱和流体引起的非均质性,利用动态应力应变模拟技术计算数字岩心的位移和孔隙流体增量图像.通过分析和比较三个数字岩心的位移和孔隙压力增量图像,细致刻画了发生于非均匀含流体多孔介质内的宏观、中观和微观尺度的流固相对运动:1)宏观尺度的波致孔隙流体流动导致波长尺度上数字岩心不同区域的孔隙压力和位移差异;2)中观尺度的流体流动发生在软层与硬层之间、气层与液层之间;3)微观尺度的流体流动发生在孔隙内部或相邻孔隙之间.数值模拟试验也证明基于数字岩心的动态应力应变模拟技术可以从微观尺度上更好的理解波致孔隙流体流动发生的物理机理,从而为建立岩石骨架、孔隙流体、孔隙结构非均质性和弹性波频散-衰减特征的映射关系奠定基础.  相似文献   

8.
Air Channel Formation, Size, Spacing, and Tortuosity During Air Sparging   总被引:4,自引:0,他引:4  
Characterizing mass transfer during in situ air sparging requires knowledge of the size, shape, and interfacial area of air channels. These characteristics were determined by analysis of digital images of air channels passing through submerged glass beads having particle size in the sand range. Pore-scale channeling occurred in all cases. The analysis showed that the air channels were narrower, more tortuous, more closely spaced, and moved nearly vertically through the coarser media. In the finer media, air channels had larger diameter, were spaced further apart, and passed nearly horizontally through the media. The mean diameter of the channels varied between 2.8 and 8.1 mm, and the mean spacing varied between 8.3 and 19.4 mm. Estimates of the area of the air-water interface per unit volume of soil (a0), computed using data from the digital images and an assumed arrangement of channels, ranged from 0.02 to 0.2 mm2/mm3. Larger a0 were obtained for coarser media and uniformly graded media. These estimates of a0 compare well with published values for common packed-column materials and for unsaturated soils.  相似文献   

9.
Saturation of porous rocks with a mixture of two fluids has a substantial effect on seismic‐wave propagation. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves due to the mechanism of wave‐induced fluid‐flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a regular way. However, recent experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Based on an approximation for the coherent wavefield in random porous media, we develop a model which assumes a continuous distribution of fluid heterogeneities. As this continuous random media approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental data. We also show how to relate the random functions to experimentally measurable parameters.  相似文献   

10.
The existence of a free‐flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro‐scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free–porous domain interface and, hence, the combined flow behaviour. Under steady‐state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well‐known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow‐through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing ‘stress‐free boundary conditions’ at the open ends of the domains, which have been shown to provide accurate results by a number of previous workers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Air injection into porous media is investigated by laboratory experiments and numerical modelling. Typical applications of air injection into a granular bed are aerated bio-filters and air sparging of aquifers. The first stage of the dynamic process consists of air injection into a fixed or a quasi-fixed water-saturated granular bed. Later stages could include stages of movable beds as well, but are not further investigated here. A series of laboratory experiments were conducted in a two-dimensional box of the size 60 cm × 38 cm × 0.55 cm consisting of glass walls and using glass beads of diameter 0.4–0.6 mm as granular material. The development of the air flow pattern was optically observed and registered using a digital video camera. The resulting transient air flow pattern can be characterized as channelled flow in a fixed porous medium with dynamic tree-like evolution behaviour. Attempts are undertaken to model the air injection process. Multiphase pore-scale modelling is currently disregarded since it is restricted to very small scales. Invasion percolation models taking into account gravity effects are usually restricted to slow processes. On the other hand a continuum-type two-phase flow modelling approach is not able to simulate the observed air flow pattern. Instead a stochastic continuum-type approach is discussed here, which incorporates pore-scale features on a subscale, relevant for the immiscible processes involved. Consequently, the physical process can be modelled in a stochastic manner only, where the single experiment represents one of many possible realizations. However, the present procedure retains realistic water and air saturation patterns and therefore produces similar finger lengths and widths as observed in the experiments. Monte Carlo type modelling leads to ensemble mean water saturation and the related variance.  相似文献   

12.
Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone.
The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation.  相似文献   

13.
In subsurface porous media, the soil water retention curve (WRC) and unsaturated hydraulic conductivity curve (UHC) are two important soil hydraulic property curves. Spatial heterogeneity is ubiquitous in nature, which may significantly affect soil hydraulic property curves. The main theme of this paper is to investigate how spatial heterogeneities, including their arrangements and amounts in soil flumes, affect soil hydraulic property curves. This paper uses a two‐dimensional variably saturated flow and solute transport finite element model to simulate variations of pressure and moisture content in soil flumes under a constant head boundary condition. To investigate the behavior of soil hydraulic property curves owing to variations of heterogeneities and their arrangements as well, cases with different proportions of heterogeneities are carried out. A quantitative evaluation of parameter variations in the van Genuchten model (VG model) resulting from heterogeneity is presented. Results show that the soil hydraulic properties are strongly affected by variations of heterogeneities and their arrangements. If the pressure head remains at a specific value, the soil moisture increases when heterogeneities increase in the soil flumes. On the other hand, the unsaturated hydraulic conductivity decreases when heterogeneities increase in the soil flumes under a constant pressure head. Moreover, results reveal that parameters estimated from both WRC and UHC also are affected by shapes of heterogeneity; this indicates that the parameters obtained from the WRC are not suitable for predicting the UHC of different shapes in heterogeneous media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An Overview of In Situ Air Sparging   总被引:3,自引:0,他引:3  
In situ air sparging (IAS) is becoming a widely used technology for remediating sites contaminated by volatile organic materials such as petroleum hydrocarbons. Published data indicate that the injection of air into subsurface water saturated areas coupled with soil vapor extraction (SVE) can increase removal rates in comparison to SVE alone for cases where hydrocarbons are distributed within the water saturated zone. However, the technology is still in its infancy and has not been subject to adequate research, nor have adequate monitoring methods been employed or even developed. Consequently, most IAS applications are designed, operated, and monitored based upon the experience of the individual practitioner.
The use of in situ air sparging poses risks not generally associated with most practiced remedial technologies: air injection can enhance the undesirable off-site migration of vapors and ground water contamination plumes. Migration of previously immobile liquid hydrocarbons can also be induced. Thus, there is an added incentive to fully understand this technology prior to application.
This overview of the current state of the practice of air sparging is a review of available published literature, consultation with practitioners, a range of unpublished data reports, as well as theoretical considerations. Potential strengths and weaknesses of the technology are discussed and recommendations for future investigations are given.  相似文献   

15.
《Advances in water resources》2007,30(6-7):1392-1407
Field and column studies of biocolloid transport in porous media have yielded a large body of information, used to design treatment systems, protect water supplies and assess the risk of pathogen contamination. However, the inherent “black-box” approach of these larger scales has resulted in generalizations that sometimes prove inaccurate. Over the past 10–15 years, pore scale visualization techniques have improved substantially, allowing the study of biocolloid transport in saturated and unsaturated porous media at a level that provides a very clear understanding of the processes that govern biocolloid movement. For example, it is now understood that the reduction in pathways for biocolloids as a function of their size leads to earlier breakthrough. Interception of biocolloids by the porous media used to be considered independent of fluid flow velocity, but recent work indicates that there is a relationship between them. The existence of almost stagnant pore water regions within a porous medium can lead to storage of biocolloids, but this process is strongly colloid-size dependent, since larger biocolloids are focused along the central streamlines in the flowing fluid. Interfaces, such as the air–water interface, the soil–water interface and the soil–water–air interface, play a major role in attachment and detachment, with significant implications for risk assessment and system design. Important research questions related to the pore-scale factors that control attachment and detachment are key to furthering our understanding of the transport of biocolloids in porous media.  相似文献   

16.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

17.
The paper presents numerical simulations of water infiltration in unsaturated porous media containing coarse-textured inclusions embedded in fine-textured background material. The calculations are performed using the two-phase model for water and air flow and a simplified model known as the Richards equation. It is shown that the Richards equation cannot correctly describe flow in the presence of heterogeneities. However, its performance can be improved by introducing appropriately defined effective capillary and permeability functions, representing largescale behaviour of the heterogeneous medium.  相似文献   

18.
This work concludes the investigations into the stability of haline flows in saturated porous media. In the first part [33] a stability criterion for density-driven flow in a saturated homogeneous medium was derived excluding dispersion. In the second part [34], the effects of dispersion were included. The latter criterion made reasonable predictions of the stability regimes (indicated by the number of fingers present) as a function of density and dispersivity variations. We found out that destabilising variables caused an increase in the number of fingers and vice versa. The investigation is extended here for the effects of the medium heterogeneity. The cell problem derived via homogenization theory [20] is solved and its solution used to evaluate the elements of the macrodispersion tensor as functions of time for flow aligned parallel to gravity. The longitudinal coefficient exhibits asymptotic behaviour for favourable and moderately unfavourable density contrasts while it grows indefinitely for higher density contrasts. The range of densities stabilised by medium heterogeneities can thus be estimated from the behaviour of the coefficient. The d3f software program is used for the numerical simulations. The code uses the cell-centred finite volume and the implicit Euler techniques for the spatial and temporal discretisations respectively.  相似文献   

19.
Air sparging has been used for several years as an in situ technique for removing volatile compounds from contaminated ground water, but few studies have been completed to quantify the extent of remediation. To gain knowledge of the air flow and water behavior around air injection wells, laboratory tests and model simulations were completed at three injection flow rates (62, 187, and 283 lpm) in a cylindrical reactor (diameter - 1.2 m, depth = 0.65 m). Measurements of the air flux distribution were made across the surface of the reactor at 24 monitoring locations, six radial positions equally spaced along two orthogonal transects. Simulations using a multiphase flow model called T2VOC were completed for a homogeneous, axisymmetric configuration. Input parameters were independently measured soil properties. In all the experiments, about 75 percent of the flow injected exited the water table within 30 cm of the sparge well. Predictions with T2VOC showed the same. The averages of four flux measurements at a particular distance from the sparge well compare satisfactorily with T2VOC predictions. Measured flux values at a given radius varied by more than a factor of two, but the averages were consistent between experiments and agreed well with T2VOC simulations. The T2VOC prediction of the radial extent of sparging coincided with the distance out to which air flow from the sparge well could not be detected in the reactor. The sparging pattern was relatively unaffected by the air injection rate over the range of conditions studied. Changes in the injection rate resulted in nearly proportional changes in flux rates.  相似文献   

20.
Fractures in porous media have been documented extensively. However, they are often omitted from groundwater flow and mass transport models due to a lack of data on fracture hydraulic properties and the computational burden of simulating fractures explicitly in large model domains. We present a MATLAB toolbox, FracKfinder, that automates HydroGeoSphere (HGS), a variably saturated, control volume finite-element model, to simulate an ensemble of discrete fracture network (DFN) flow experiments on a single cubic model mesh containing a stochastically generated fracture network. Because DFN simulations in HGS can simulate flow in both a porous media and a fracture domain, this toolbox computes tensors for both the matrix and fractures of a porous medium. Each model in the ensemble represents a different orientation of the hydraulic gradient, thus minimizing the likelihood that a single hydraulic gradient orientation will dominate the tensor computation. Linear regression on matrices containing the computed three-dimensional hydraulic conductivity (K) values from each rotation of the hydraulic gradient is used to compute the K tensors. This approach shows that the hydraulic behavior of fracture networks can be simulated where fracture hydraulic data are limited. Simulation of a bromide tracer experiment using K tensors computed with FracKfinder in HGS demonstrates good agreement with a previous large-column, laboratory study. The toolbox provides a potential pathway to upscale groundwater flow and mass transport processes in fractured media to larger scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号