首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
关于青藏高原隆起对中国气候影响的讨论   总被引:4,自引:0,他引:4  
彭华 《地理研究》1989,8(3):85-94
许多学者把高原隆起作为季风形成的必要条件,本文认为把在现代的位置上“削平”高原而模拟出的结果推广到早第三纪是不妥的。因为根据古地理和古地磁资料恢复的青藏高原早第三纪位置与现代有着巨大的差异。我们试图重建青藏高原隆起的动态模式,提出在早第三纪,中国已经存在古季风的初步认识,而青藏高原的隆起,只是使季风环流进一步加强,中国气候图式因高原隆起而趋于复杂化。  相似文献   

2.
古湖岸堤是湖泊湖面变化的地貌学证据,通过古湖岸堤沉积年代学研究可重建地质时期湖泊演化历史。青藏高原内陆湖泊众多,保存了大量的第四纪时期古湖岸堤,是研究过去湖泊演化和气候变化信息的重要载体。对青藏高原班戈错盐湖北岸和东岸的低位连续古湖岸堤开展了地貌调查和光释光年代学研究。结果表明班戈错自末次冰消期(13. 5±1. 2 ka BP)以来,湖面整体呈波动下降过程,期间出现了4期湖面稳定阶段,分别在末次冰消期(13. 5±1. 2~11. 2±1. 0 ka BP)、全新世早中期(10. 1±0. 8~6. 5±0. 5 ka BP)、全新世后期(4. 2±0. 4~3. 1±0. 2 ka BP)以及全新世晚期(1. 7±0. 1~1. 2±0. 1 ka BP)。全新世晚期约1. 7 ka BP以后湖面迅速退缩,湖泊蒸发浓缩进入盐湖阶段。在末次冰消期班戈错高湖面形成主要与北半球太阳辐射强度增加引起气温升高,导致区域冰雪融水量增加相关,而在全新世湖面变化主要受印度季风强度变化控制。  相似文献   

3.
南京下蜀黄土红外释光地层年代学   总被引:7,自引:1,他引:6  
下蜀黄土地层年代学对于理解季风环流时空格局演化及其与青藏高原阶段性隆升的关系十分重要。作者基于下蜀黄土红外释光测年和下蜀黄土及黄土高原洛川;剖面磁化率序列的对比分析,认为下蜀黄土第一层黄土层形成于末次冰期,最底部的黄土层与洛川的 L5相当。因而下蜀黄土应相当于黄土高原LS以来的风成堆积,其底界年代约为 500 ka。也就是说,在 500 ka左右黄土堆积的南界已达长江下游地区。这可能是因为其时青藏高原的隆升已到达一特殊高度,对东亚季风演化的影响成为一个转折点,加强了东亚季风的强度。  相似文献   

4.
第四纪泥石流蕴含了关于河流地貌演化、新构造运动和气候变化的丰富信息。对发育于云南省德钦白马里你共卡雪山垭口海拔2700 m,年代为2.48~1.54MaBP的古泥石流堆积物进行了系统研究。研究表明:泥石流堆积体呈扇状分布,其沉积构造有叠瓦构造、砾石支撑-叠置构造和石线构造,以稀性泥石流为主。古泥石流夹含的红色古风化壳由古泥石流堆积物风化形成,属于弱风化的红化土类型,反映了温和较湿的气候特征。主量化学元素和孢粉分析表明,古泥石流形成的早更新世时期金沙江河谷地区气候温和湿润,远比现在气候温暖。青藏高原东南缘白马雪山剥蚀面上发育的巨厚层古泥石流扇形堆积体的发现,表明青藏高原东南缘在早更新世早期已经有稀性泥石流出现,青藏高原快速隆升、夏季风加强和暴雨形式降水出现是该区早更新世泥石流发育的重要动力学因素。依据现代红化土的发育条件,估算自~1.54Ma以来青藏高原东南缘白马雪山一带的地表隆升幅度达1300m。  相似文献   

5.
青藏高原大湖期   总被引:5,自引:1,他引:4  
青藏高原湖盆中古湖岸线分布广泛,从最高湖岸线的分布确定的大湖期湖泊面积,一般比现代湖泊面积大数倍至十多倍.据高原不同地区的十多个湖泊沉积测年数据分析,大湖期的年代大致相近,在40~25ka BP居多,有的可能延续至20ka BP,与深海氧同位素3阶段、末次冰期间冰段相当.该时期高原环境特别湿润.大湖期的形成与该时期亚洲夏季风特别强盛有关.  相似文献   

6.
对黄土高原西部的陇西盆地中断岘黄土剖面地层中的磁化率、粒度、CaCO3含量和有机碳含量等气候代用指标进行了综合分析。研究表明,青藏高原东北部地区在末次间冰期以来,其冬、夏季风的变化分别经历了多次相对增强的时期;其演化阶段基本可与深海氧同位素曲线(SPEC-MAP)对比,并且与同期的印度洋季风强度变化存在着较高的一致性。由此可以认为,全球冰量变化可能不是控制青藏高原季风演变的决定因素,而其它因素如太阳辐射变化及高原下垫面状况对高原季风演化可能具有更为重要的意义。  相似文献   

7.
青藏高原地理环境研究进展   总被引:27,自引:4,他引:23  
郑度  李炳元 《地理科学》1999,19(4):295-302
经三纪青藏地区曾二次隆升与夷平,3,4Ma以来经历了高原强烈隆起,现代季风形成,高原山地抬升、进入冰冻圈,环境剧烈波劝,高原内部干旱化及全新世环境波动变化等古寺理演化阶段。  相似文献   

8.
云南千湖山第四纪冰川发育特点与环境变化   总被引:2,自引:0,他引:2  
千湖山(4249 m) 是横断山脉中段保存确切第四纪冰川遗迹的山地,受西南季风影响强烈。对于研究青藏高原边缘山地冰川发育与气候和构造之间的耦合关系具有十分重要的科学意义。在千湖山海拔3500 m以上保存着古冰川侵蚀与堆积地貌,冰川发育依托海拔4000~4200 m的夷平面及其支谷地形。冰川形态类型为小型的冰帽以及由冰帽边缘溢流进入山谷的山谷冰川。应用相对地貌法,光释光(OSL) 年代测试,本文确定千湖山地区的冰进系列:末次冰盛期(LGM,22.2±1.9 ka BP)、末次冰期中期(MIS3b,37.3±3.7 ka BP、45.6±4.3 ka BP45.6±4.3 ka BP)、末次冰期早期(MIS4)。千湖山冰川前进规模是MIS3b 阶段大于末次冰盛期,主要原因是末次冰期中期(MIS3b) 时本区气候相对湿润,而在末次冰盛期(MIS2) 时气候条件比较干燥。在总体相似的气候背景下,与横断山其它存在多期次冰川作用的山地相比,千湖山只发育末次冰期的冰川作用,其差异性说明该地区冰川发育主要受山体构造抬升控制。  相似文献   

9.
气候和地貌对晚第四纪冰川发育差异性的影响   总被引:1,自引:1,他引:0  
中国第四纪冰川作用极大地推动了高亚洲乃至全球冰川形成机制的探讨。青藏高原以及喜马拉雅山地冰川作用的时限和规模研究得到了广泛关注,为西风带与西南季风带对晚第四纪冰川作用差异性问题的解决提供了有利条件。然而,对于中亚西风环流与东亚季风环流影响下的冰川演化差异性关系不甚明确,两大气候系统控制下的山地第四纪冰川的冰进时序、冰期历史和冰川规模显示出不同特点,其差异性主要体现在:西部山地的冰期启动时间早,冰川规模随时间而逐渐缩小,冰川历史较为完整,绝对年代证据显示冰川作用的启动时间是450 ka 左右的中梁赣冰期(MIS12);东部山地的冰期历史较短,仅保留末次冰期(~75 ka)的冰川遗迹,冰川作用的阶段性明显;冰川演化时间与空间的差异性表明,影响冰川发育的因素不仅仅是区域气候,构造因素也起着相当重要的作用。  相似文献   

10.
夏季风期间青藏高原地形对降水的影响   总被引:10,自引:2,他引:8  
张杰  李栋梁  王文 《地理科学》2008,28(2):235-240
利用高分辨率的3″数字高程模型资料,青藏高原东部102个常规气象观测站5~10月份的降水资料,采用多元逐步回归的方法,分类建立青藏高原雨季逐月降水量和6个地理、地形因子间关系模型,估算青藏高原地区雨季降水量空间分布。结果表明,以此方法建立的青藏高原降水量与诸因子间方程的相关性显著, 通过置信度0.95 的检验,相对误差在20%内;受季风影响,高原东部地区降水呈现出南北差异,降水高值中心也出现北进-东移-南撤的分布特征,反映了季风水汽输送规律;地理因子、高度及局地地形因子对降水的空间分布的影响有很大差异。  相似文献   

11.
化隆盆地地貌演化与黄河发育研究   总被引:2,自引:0,他引:2  
黄河上游的化隆盆地在第三纪期间为古湖占据.上新世晚期古湖开始缩小,约1.1MaBP时消失,从而导致黄河在化隆盆地的出现.化隆盆地演化资料表明,青藏高原强烈隆起始于上新世中期,以后经多次快速构造抬升,以1.1和0.8MaBP的抬升最为剧烈.  相似文献   

12.
1 Introduction The TP is a spectacular field laboratory for analyzing fundamental processes of geodynamics and environmental change as well as their interrelationships (Kutzbach et al., 1993). Being the largest and highest continental plateau with a mean …  相似文献   

13.
临夏盆地三千万年来沉积物粒度特征及其构造意义*   总被引:6,自引:0,他引:6  
本文通过对临夏盆地长达30m.y.的连续沉积(临夏群)共计779个样品的粒度特征分析,划分出七大完整的沉积旋回。粒度曲线明显地表示出青藏高原的强烈隆升始于距今3.4Ma前。该文还初步确定出青藏高原地区两次夷平过程最终结束的年代。  相似文献   

14.
The Tibetan Plateau (TP) plays a unique role in Earth System Sciences. It represents a key area to understand not only basic geodynamic processes linked with the formation and uplift of mountains and plateaus, but also the interaction between plateau uplift and environmental changes. Over the last 50 million years the formation of the TP has considerably influenced the global climate and monsoon system. Moreover, the TP proves to be extremely sensitive to present-day global change phenomena. Based upon the foundation of the new Institute of Tibetan Plateau Research (ITP) by the Chinese Academy of Sciences (CAS) and through the Memorandum signed by the CAS and DFG (Deutschen Forschungsgemeinschaft), both CAS and DFG provide opportunities to intensify TP research and to develop coordinated research programs. “The Tibetan Plateau – Geodynamics and Environmental Evolution” consisting of one big projects funded by CAS and five projects funded by DFG that cover the pre- and early-collision history of the TP, the Palaeogene/Neogene uplift and climatic dynamics as well as the Late Quaternary and recent environmental and climatic changes on the TP. The projects are linked through several levels of interactions.  相似文献   

15.
ZHAO Jingbo 《地理学报》2005,15(4):475-483
On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the first, second, third and fourth major changes have taken place since the formation of the Loess Plateau, and the fifth major change will happen in 100 years. The first major change, which occurred at about 2.50 Ma BP, was a transition from red earth plateau to the Loess Plateau, and reflects the climate from the warm-sub-humid to the alteration between cold-and-dry and warm-and-humid. The driving force of this first major change was climate. The second major change, which took place at about 1.60 Ma BP, was a vital transition of the main rivers in this area from non-existence to existence, and represented an important change on the Loess Plateau's neotectonic uplift from the slow rising to periodically accelerated rising, and making the river's erosion go from feeble to strong. The driving force of the second major change is tectonic uplift. The third major change which occurred at about 150 ka, was a great transition of the Yellow River's inpouring from a lake outlet to a sea outlet. At that time, the Yellow River cut the Sanmen Gorge. The transition led to the transformation of loess material from internal transportation to external transportation. The driving force of the third major change was running water erosion. The fourth one that occurred at about 1.1 ka was a change of the Loess Plateau from natural erosion to erosion accelerated by human influences. The driving force of the fourth major change is mainly human activities. The fifth major change, which is the opposite change to the fourth one, in which the motive power is human activity, too.  相似文献   

16.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   

17.
There is a set of Late Cenozoic sediments in the Kunlun Pass area, Tibetan Plateau, China. Paleomagnetic, ESR and TL dating suggest that they date from the Late Pliocene to the Early Pleistocene. Analyses of stratigraphy, sedimentary characteristic, and evolution of the fauna and flora indicate that, from the Pliocene to the early Quaternary (about 5–1.1 Ma BP), there was a relatively warm and humid environment, and a paleolake occurred around the Kunlun Pass. The elevation of the Kunlun Pass area was no more than 1500 m, and only one low topographic divide existed between the Qaidam Basin and the Kunlun Pass Basin. The geomorphic pattern in the Kunlun Pass area was influenced by the Kunlun–Yellow River Tectonic Movement 1.1–0.6 Ma BP. The Wangkun Glaciation (0.7–0.5 Ma) is the maximum Quaternary glaciation in the Pass and in other areas of the Plateau. During the glaciation, the area of the glaciers was 3–5 times larger than that of the present glacier in the Pass area. There was no Xidatan Valley that time. The extreme geomorphic changes in the Kunlun Pass area reflect an abrupt uplift of the Tibet Plateau during the Early and Middle Pleistocene. This uplift of the Plateau has significance on both the Plateau itself and the surrounding area.  相似文献   

18.
At present, gas hydrates are known to occur in continental high latitude permafrost regions and deep sea sediments. For middle latitude permafrost regions of the Tibetan Plateau, further research is required to ascertain its potential development of gas hydrates. This paper reviewed pertinent literature on gas hydrates in the Tibetan Plateau. Both geological and ge- ographical data are synthesized to reveal the relationship between gas hydrate formation and petroleum geological evo- lution, Plateau uplift, formation of permafrost, and glacial processes. Previous studies indicate that numerous residual basins in the Plateau have been formed by original sedimentary basins accompanied by rapid uplift of the Plateau. Ex- tensive marine Mesozoic hydrocarbon source rocks in these basins could provide rich sources of materials forming gas hydrates in permafrost. Primary hydrocarbon-generating period in the Plateau is from late Jurassic to early Cretaceous, while secondary hydrocarbon generation, regionally or locally, occurs mainly in the Paleogene. Before rapid uplift of the Plateau, oil-gas reservoirs were continuously destroyed and assembled to form new reservoirs due to structural and thermal dynamics, forcing hydrocarbon migration. Since 3.4 Ma B.P., the Plateau has undergone strong uplift and extensive gla- ciation, periglacier processes prevailed, hydrocarbon gas again migrated, and free gas beneath ice sheets within sedi- mentary materials interacted with water, generating gas hydrates which were finally preserved under a cap formed by frozen layers through rapid cooling in the Plateau. Taken as a whole, it can be safely concluded that there is great temporal and spatial coupling relationships between evolution of the Tibetan Plateau and generation of gas hydrates.  相似文献   

19.
1 Introduction W hatim portanttransform ations have taken place during the form ation ofthe Loess Plateau in China? Research on this problem has especially im portantscientific significance forus to learn ofthe evolution oftheLoessPlateau and predictthe f…  相似文献   

20.
通过对位于苏北盆地中部的兴化XH-1孔350.08 m连续岩芯的古地磁测年,确定了年代地层序列.在此基础上,对钻孔沉积物进行了以粒度特征为重点,包括矿物组成、结构、沉积构造和沉积组合在内的综合岩相古地理分析,划分出8个沉积相和19个沉积亚相.并根据沉积相的组合特征,将苏北盆地3.20Ma以来的沉积环境演化划分为沉降盆地...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号