共查询到19条相似文献,搜索用时 104 毫秒
1.
2.
1961-2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析 总被引:4,自引:2,他引:4
采用1961-2010年雅鲁藏布江流域6个气象站近50 a降水量的实测数据,统计降水量的年、干季、湿季平均序列;结合流域6个水文站近50 a年径流序列资料,分析雅鲁藏布江流域降水变化特征及其对径流量的影响. 研究表明: 雅鲁藏布江流域1961-2010年近50 a年平均降水量表现为不显著增加,增加速率为3.3 mm·(10a)-1,其中干季、湿季分别为1.9 mm·(10a)-1 和1.4 mm·(10a)-1,均为增加趋势;降水量的年代际变化在20世纪60年代相对偏多,70年代较平稳,而80年代为最少,到90年代有所回升,21世纪前10 a降水量处于不显著的增多态势. 雅鲁藏布江径流的变差系数CV值在0.15~0.40之间,年际变化较小. 径流的年代际变化总体上存在一定的周期性波动,20世纪60年代是一个相对的丰水期,70年代减少,80年代达到最小值,之后径流有所回升,进入21世纪前10 a呈不显著增加趋势. 年、湿季尺度上径流量和降水量的相关显著,湿季作为径流主要形成期,其降水量的多寡直接影响流域径流量的丰枯,湿季降水量的增减影响着流域径流量的增减. 由此可见,降水变化是雅鲁藏布江天然径流最主要影响因子,最终也决定了雅鲁藏布江流域年径流量的丰枯. 相似文献
3.
4.
利用NCEP/NCAR1980-1989年10年逐日00UTC、12UTC再分析资料及青藏高原降水、径流资料,研究了青藏高原雅鲁藏布江流域的水平衡特征,估算了雅鲁藏布江流域的蒸发、土壤和地下水含量。结果表明:雅鲁藏布江流域夏季是水汽辐合区,降水大于蒸发;秋末到次年春季是水汽通量辐散区,蒸发大于降水。降水主要集中在6~9月。径流的年际变化趋势同降水相近,径流主要是由降水补给的,径流峰值滞后降水峰值一个月。雅鲁藏布江流域土壤及地下含水量从1~6月逐渐减少,7月以后开始增加,10月是土壤及地下水最丰富的时段。20世纪80年代中期和后期降水、蒸发、径流等呈增长趋势,这同ENSO事件有关。 相似文献
5.
为了解雅鲁藏布江流域汛期极端降水的变化规律,推算一定重现期的极端降水量分位数,通过百分位法、Hill图法、年交叉率法选取阈值,借助广义帕累托分布函数(GPD)对流域极端降水频率进行了分析。结果表明:99百分位时的阈值为流域内各站点的最佳阈值,且各站点超阈值序列通过了M-K的平稳性检验,无明显突变。拟合效果通过K-S检验,各站点拟合的极端降水理论频数和实测频数基本相符。尺度参数的大值区位于流域下游,表明该地区的极值波动大;形状参数正值区位于流域中上游地区,说明发生破纪录降水事件的概率较大,拟合结果与实际观测一致。从5年一遇和10年一遇的极端降水值来看,雅江流域除拉孜站外,其他地区降水极值均超过30 mm,日喀则地区的降水极值达50 mm;各地区20年一遇和30年一遇的降水极值增长的非常缓慢。通过与实际极端降水值对比分析得出,GPD拟合计算出的重现期水平基本符合实际,即具有一定的合理性。 相似文献
6.
在雅鲁藏布江中游山南宽谷段发现了一套湖相沉积地层,形成时代为晚更新世晚期,为冰川阻江形成的堰塞湖沉积物。野外调查发现该套湖相地层在桑日县、乃东县、扎囊县等地均有出露,综合研究认为其为一个东起桑日县扎巴村、西至贡嘎机场附近的大型古堰塞湖泊,面积达700多km2。通过区域调查,该堰塞湖形成的湖相沉积地层在贡嘎县杰德秀镇出露最厚,厚10余m,主要由粉砂质黏土层、细砂层组成,水平纹层等湖相沉积特征明显,本研究称之为杰德秀古湖。杰德秀剖面顶部14C日历校正年龄为15 680~15 105 aBP,属于末次盛冰期。对比林芝古湖、格嘎古湖和松宗古湖等雅鲁藏布江下游堰塞湖的沉积物特征和形成时间,认为杰德秀古湖发育于末次盛冰期。沉积相特征和湖水库容量模拟分析表明,该堰塞湖发育时期,雅鲁藏布江中游山南宽谷段并未完全封闭,为一个湖水面积巨大的过水湖或吞吐湖,类似于现代过水水库。桑日县扎巴村雅鲁藏布江河谷两岸分布有冰碛物,其与雅鲁藏布江中游山南宽谷段的湖相沉积地层的时空关系指示杰德秀古湖与冰川阻塞河道有关,杰德秀古湖是由于冰川阻江形成的冰川堰塞湖。研究结果也进一步说明,雅鲁藏布江现代水系形成以前,其中游不存在面积巨大的众多古湖泊,雅鲁藏布江也不是溯源侵蚀疏干多个古湖泊而形成的,在古湖泊形成之前,雅鲁藏布江已经贯通。雅鲁藏布江流域内的古湖泊是由于气候变化、新构造运动或地震活动等原因造成河道堵塞形成的堰塞湖。 相似文献
7.
1956-2006年阿克苏河径流变化及其对区域水资源安全的可能影响 总被引:10,自引:7,他引:10
应用新疆塔里木河流域天山南坡阿克苏河流域1956-2006年的实测径流资料, 分析了阿克苏河流域各支流径流变化的特征与趋势. 结果表明, 近50 a来, 阿克苏河流域径流量呈显著的增加趋势, 其中冰川融水是其主要贡献量. 径流量在1994年发生了增多的跃变, 原因可能是气温持续升高引起冰川消融径流急剧增多, 导致以冰川融水补给为主的河流径流量大增. 这种趋势能够持续多久, 取决于未来的气候变化及流域上游冰川系统的响应. 随着冰川的加剧退缩和较小冰川的消失, 短期内会给阿克苏河流域带来丰富的水资源;但是随着冰川补给峰值过后径流量逐渐减小, 将会给塔里木河流域带来严重的水资源和生态安全问题. 冰川的强烈退缩, 还会带来一系列的洪水灾害问题. 相似文献
8.
雅鲁藏布江流域河水中氧稳定同位素的时空变化 总被引:4,自引:0,他引:4
根据雅鲁藏布江流域2005年干流的拉孜、奴各沙、羊村和奴下4个站点河水中δ18O实测数据以及相关的气象和水文资料,分析了河水中δ18O的变化特征.通过与同期该流域降水中δ18O的比较,初步研究了流域内河水中δ18O的时空分布特征.结果表明: 河水中δ18O的变化大致以7月中旬为界划分为两个明显的阶段,前一阶段河水中δ18O呈上升趋势,以相对高值为特征;而后一阶段则呈下降趋势,以相对低值为特征;河水中δ18O的这种季节变化可以很好地被正弦波变化所揭示.从空间上来看,由于受到支流、地下水和蒸发等的影响,河水中δ18O变化比较复杂,在青藏高原夏季季风降水期间,由下游的奴下站至中游的奴各沙站,河水中的δ18O逐渐递减,其由高程效应和水平距离所造成的递减率分别为0.21‰·(100m)-1和0.45‰·(100km)-1.河水中δ18O变化受到降水中δ18O强烈影响,但其波动远小于降水,在青藏高原夏季季风降水期间,河水中δ18O的平均波动幅度为4.8‰,比流域降水中δ18O的平均波动幅度低了19.7‰.整个流域均到受蒸发的影响,在青藏高原夏季季风降水期间,降水中δ18O的加权平均值为-17.4‰,河水中δ18O的平均值为-16.6‰,造成这种差异的主要原因在于降水和河水中的稳定同位素又通过蒸发发生分馏. 相似文献
9.
10.
11.
冰川物质平衡线的估算方法 总被引:1,自引:8,他引:1
冰川物质平衡线高度(ELA)与气候变化, 特别是与气温和降水的变化关系密切, 是重建古气候和反映冰川积累和消融变化的重要代用指标.直接观测方法可以获得较为精准的ELA, 但不能大范围展开.因此, ELA的间接估算方法, 如赫斯法(Hess)、 积累区面积比率法(AAR)、 面积–高程平衡率法(AABR)、 末端至冰斗后壁比率法(THAR)、 终碛到最高峰高差比率法(TSAM)、 侧碛最大高度法(MELM)、 冰斗底部高程法(CF)、 冰川作用阈值法(GT)等, 得到了广泛的发展与应用.然而, 由于受到雪崩或风吹雪补给、 表碛覆盖、 冰川类型和形态等因素的影响, 单一使用某种方法易受到算法本身的限制, 误差较大, 需综合考虑各种算法的适用性和选取参数的差异, 以提高计算的精度, 同时也要考虑到后期构造抬升等的影响. 相似文献
12.
波堆藏布谷地冰碛丘陵形成机制及其环境意义 总被引:2,自引:4,他引:2
波堆藏布谷地中分布着大面积的冰碛丘陵, 通过考察发现其个体大小、外形、分布规模及内部砾石组成等方面都与高纬大冰盖外围形成的冰碛丘陵有很大的区别. 以冰川沉积学理论为基础, 从沉积动力学的角度讨论中低纬度波堆藏布谷地中冰碛丘陵的形成机制. 结果表明: 气候变化造成冰川的大面积死冰加之宽阔的河谷、海洋性冰川的特性促使波堆藏布谷中形成如此大面积的冰碛丘陵; 同时,大规模的冰碛丘陵表明气候转暖(抑或变干)的过程是突变的. 相似文献
13.
近30 a来雅鲁藏布江流域冰川系统特征遥感研究及典型冰川变化分析 总被引:1,自引:2,他引:1
综合运用RS和GIS手段, 利用卫星遥感影像, 结合中国第一次冰川编目数据及数字高程模型(DEM), 获取了雅鲁藏布江流域不同朝向上冰川面积分布、 冰川面积随高度带分布状况统计结果, 及3个冰川聚集区21条大型海洋性冰川在1976、 1988、 2005年的冰川面积、 厚度、 冰储量及物质平衡线等基本参数, 丰富了该研究区相关冰川信息, 并统计分析了21条大型冰川面积变化状况及与气候变化的响应关系. 研究表明: 3个区域冰川在1976-1988年和1988-2005年时间段内随着气温、 降水的变化出现了相应的波动, 但总的来说在1976-2005年间, 这21条大型海洋性冰川并没有出现明显的前进或退缩现象, 这可能是由于降水的增加抵消了气温升高给冰川积累带来的不利影响, 也可能是由于大型冰川在高海拔地区有较大的积累区补给造成的, 进一步的研究亦在进展中. 相似文献
14.
用OSL方法确定雅鲁藏布江大拐弯第四纪晚期冰川堰塞湖年龄 总被引:2,自引:0,他引:2
雅鲁藏布江是青藏高原上的一条大河, 其河谷地貌和地质环境演化的发育历史对于青藏高原地质研究有重要意义。前人用ESR和14C测年方法对雅鲁藏布江河谷两岸广泛分布河湖相沉积物、冰碛物测年确定了有四期堰塞湖。作者用光释光(OSL, Opically Stimulated Luminesecence)测年方法分析采集到的湖相样品年龄为(50.9±2.1) ka BP和(1.8±0.1) ka BP, 证明雅鲁藏布江大拐弯处末次冰期早冰阶和新冰期存在 古堰塞湖。 相似文献
15.
16.
普若岗日冰原及其小冰期以来的冰川变化 总被引:13,自引:26,他引:13
普若岗日是藏北高原最大的由数个冰帽型冰川组合成的大冰原.冰川覆盖面积422.58km2,冰储量为52.5153km3.冰川雪线海拔5620~5860m.冰原呈辐射状向周围微切割的宽浅山谷溢出50多条长短不等的冰舌,最大的可伸至山麓地带,形成宽尾状冰舌.在一些下伸较低的冰舌段,形成有许多冰塔林,以雄伟壮观的连座冰塔林和雏形冰塔林为主.在东南部一些冰舌段雏形冰塔林的上部,分布着奇特的新月型雪冰丘和链状排列有序的雪冰丘.小冰期以来,普若岗日的冰川呈退缩趋势.环绕冰舌分布的冰碛序列,在北部和东南部普遍可区分出3道.对比研究认为,分别属于小冰期3次寒冷期冰进的遗迹.而西部小冰期冰川作用的范围较小.按小冰期最盛时的规模量测当时的冰川面积,和现在相比该时段内冰川面积减少了24.20km2,当时冰川面积比现在大57%.由此引起的冰川资源的减少为3.6583km3,相当于36.583×108m3的水量.在普若岗日西侧,小冰期后期至20世纪70年代,冰川退缩了20m;70年代至90年代末,冰川退缩了40~50m;平均1.5~1.9m·a-1;1999年9月至2000年10月,退缩4~5m.明显反映出逐渐加剧的变化趋势.和其它地区相比较,普若岗日冰原变化比较小,表现出比较稳定的状。 相似文献
17.
雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义 总被引:5,自引:0,他引:5
雅鲁藏布江蛇绿岩带自萨嘎以西分为达巴—休古嘎布(南亚带)和达机翁—萨嘎(北亚带)两个亚带,但两者的成因和构造背景还不清楚。本文在研究北亚带加纳崩—错不扎基性岩脉的年代学和地球化学及对比南亚带的基础上,探讨了两个带的成因和关系问题。加纳崩辉长岩和错不扎辉绿岩呈脉状或长透镜状产在方辉橄榄岩中,宽1~3 m不等,走向北西。两者的锆石U-Pb年龄分别为(125.8±2.6)Ma和(127.0±0.5)Ma。岩石地球化学均具有高Si、Al、Na、Mg和低Ti、K、P的特征,属钙碱性玄武质成分。球粒陨石标准化曲线与N-MORB一致;N-MORB标准化蛛网图中显示Nb、Ta、Ti负异常,判断两者形成于大洋俯冲的弧前或弧后环境。对比前人研究,南亚带普兰、东波和休古嘎布蛇绿岩中的基性岩具有相同产状和时代(120~130 Ma),地球化学特征也同样显示形成于洋内俯冲带环境。结合两带基性岩的围岩地幔橄榄岩均具有弧前环境特征,初步认为南北蛇绿岩亚带可能是相同构造背景的大洋岩石圈残余。 相似文献
18.
长江黄河源区积雪空间分布与年代际变化 总被引:1,自引:0,他引:1
应用长江黄河源区及其周边地区16个气象站逐日积雪资料,分析了长江黄河源区积雪的空间分布和年代际变化特征.结果表明:以巴颜喀拉山主峰为中心的黄河源头和长江源东南部地区是年积雪深度高值中心,黄河源头以西和五道梁以东的长江源东北部和黄河源西北部广大地区是低值中心.冬春累积积雪深度占年累积积雪深度的比例>71.0%,夏半年(6~9月)对其的贡献小,但夏半年的积雪日数占年积雪日数的1/3.曲麻莱达日一线以南地区积雪主要发生在1月份,以北地区一年有两个高值期:前冬10~11月和春季3~5月.长江源和黄河源头地区积雪建立早,积雪季节长,结束晚,消退过程缓慢;而黄河源东部地区,积雪建立稍晚,积雪发展比较缓慢,消退过程迅速.近40 a来长江黄河源区积雪呈确定的增长态势,长江源区冬春积雪增长了62.11%,黄河源区增长了60.18%.但二者积雪变化位相基本相反,变化幅度长江源大起大落,而黄河源比较平缓,多雪年份出现也不一致.整个源区20世纪60年代至70年代初为积雪偏少期,70年代中期至90年代是积雪偏多期.从20世纪70年代中至80年代末,积雪明显增加,90年代积雪增加速度有所放慢,近40 a江河源区平均冬春累积积雪深度增加了60.95%.长江源区对整个源区积雪变化起主导作用,源区平均冬春累积积雪深度变化主要表现长江源的特征. 相似文献
19.
40a来江河源区的气候变化特征及其生态环境效应 总被引:68,自引:19,他引:68
通过江河源区分布的5个气象台站有关气温与降水的多年数据,分析了近40a来江河源区的气候变化特征,结果表明,近40a来江河源区气候变化的总趋势是气温升高,降水量增加,但降水量的增加主要体现在春季降水和近15a来冬季降水的明显增加上,对植被生长起重要作用的夏季降水量却呈明显减少趋势;江河源区20世纪80年代10a平均气温比50年代高0.12~0.9℃,大部分地区高于0.3℃,属于青藏高原高温区或升温幅度最大的地区之一,平均升温0.44℃,明显比全国平均升温0.2℃要高出一倍,在这种背景下,与植被生长关系密切的4、5月和9月气温呈现持续下降态势,江河源区脆弱的生态环境体系对气候的这种变化响应强烈,冰川退缩,多年冻土消融加剧,导致大范围高寒草甸与草原被植退化。 相似文献