首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the problem of critical inclination orbits for artificial lunar satellites, when in the lunar potential we include, besides the Keplerian term, the J 2 and C 22 terms and lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the inclination and the argument of pericenter do not remain both constant at the same time, as is the case when only the J 2 term is taken into account. Instead, there exist quasi-critical solutions, for which the argument of pericenter librates around a constant value. These solutions are represented by smooth curves in phase space, which determine the dependence of the quasi-critical inclination on the initial nodal phase. The amplitude of libration of both argument of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to <0°.1 for both quantities, when a uniform rotation of the Moon is taken into account. The values of J 2, C 22 and the rotation rate strongly affect the quasi-critical inclination and the libration amplitude of the argument of pericenter. Examples for other celestial bodies are given, showing the dependence of the results on J 2, C 22 and rotation rate.  相似文献   

2.
Using inter-satellite range data,the combined autonomous orbit determination problem of a lunar satellite and a probe on some special orbits is studied in this paper.The problem is firstly studied in the circular restricted three-body problem,and then generalized to the real force model of the Earth-Moon system.Two kinds of special orbits are discussed:collinear libration point orbits and distant retrograde orbits.Studies show that the orbit determination accuracy in both cases can reach that of the observations.Some important properties of the system are carefully studied.These findings should be useful in the future engineering implementation of this conceptual study.  相似文献   

3.
J.I. Katz 《Icarus》1975,25(2):356-359
The behavior of a test particle placed at a triangular libration point of the Earth-Moon system is calculated using Newton's equations for the four-body problem, with arbitrarily chosen initial conditions. If the orbits of the massive bodies have their real eccentricities, then the test particle leaves the vicinity of the libration point in three years, much faster than if the orbits were circular. Very small particles are affected by solar radiation pressure, and may leave even faster.  相似文献   

4.
The present study deals with numerical modeling of the elliptic restricted three-body problem as well as of the perturbed elliptic restricted three-body (Earth-Moon-Satellite) problem by a fourth body (Sun). Two numerical algorithms are established and investigated. The first is based on the method of the series solution of the differential equations and the second is based on a 5th-order Runge-Kutta method. The applications concern the solution of the equations and integrals of motion of the circular and elliptical restricted three-body problem as well as the search for periodic orbits of the natural satellites of the Moon in the Earth-Moon system in both cases in which the Moon describes circular or elliptical orbit around the Earth before the perturbations induced by the Sun. After the introduction of the perturbations in the Earth-Moon-Satellite system the motions of the Moon and the Satellite are studied with the same initial conditions which give periodic orbits for the unperturbed elliptic problem.  相似文献   

5.
This paper is the continuation of a previous work [6] in which we have obtained the set of all possible equilibria of a gyrostat satellite attracted by n points mass by solving two algebraical equations P1=0 and P2=0. It results that there is a maximum of 24 isolated equilibrium orientations for the satellite. Sufficient conditions of stability for these relative equilibria are given.Here we consider only the elementary case n=1. We show that the coefficients of the two algebrical equations depend on four parameters j1, j3, K and v2. The two first parameters depend only on the direction of the internal angular momentum of the rotors, the third being only function of the principal moments of inertia of the satellite and the last parameter is a decreasing function of one of the components of . We show that the two polynomials P1 and P2 are unvariant within two transformations of the parameters j1 and j3. It is then possible to reduce the range of variation of these parameters.For some particular values of the parameters, it is possible to give the minimum number of real roots of equations P1=0 and P2=0. In general cases, a computing program is written to obtain the number of real roots of these equations according to the values of the parameters. We show that among the roots found, few of them corresponds to stable equilibrium orientations.  相似文献   

6.
In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.  相似文献   

7.
This review presents the recent works devoted to the construction or the improvement of the theories of motion of all natural planetary, satellites (except the Moon). The knowledge of the long-term evolution of these motions is strongly dependent on the accuracy of current theories. With the increasing precision of the ground-based observations, and with the past and future space missions, most of the theories have been or have to be revisited, taking into account more and more disturbing effects and specially tidal dissipation. These studies are often made difficult by the resonant behaviour of the system. We emphasize here tidal evolution in resonance. In the Jovian and Saturnian systems, tidal actions might explain the observed resonant state, as well as the heating of the satellites up to the softening and the resurfacing of some of them. However in the case of the Uranian satellites., no true resonance appears in spite of an observational evidence of tidal effects in resurfacing Ariel and Miranda, and new works try to expalin these differences.  相似文献   

8.
Some problems in determining the orbits of inner satellites associated with the complex behavior of the target function, which is strongly ravine and which possesses multiple minima in the case of the satellite orbit is determined based on fragmentary observations distributed over a rather long time interval, are studied. These peculiarities of the inverse problems are considered by the example of the dynamics of the inner Jupiter satellites: Amalthea, Thebe, Adrastea, and Metis. Numerical models of the satellite motions whose parameters were determined based on ground-based observations available at the moment to date have been constructed. A composite approach has been proposed for the effective search for minima of the target function. The approach allows one to obtain the respective evaluations of the orbital parameters only for several tens of iterations even in the case of very rough initial approximations. If two groups of observations are available (Adrastea), a formal minimization of the target function is shown to give a solution set, which is the best solution from the point of view of representation of the orbital motion, which is impossible to choose. Other estimates are given characterizing the specific nature of the inverse problems.  相似文献   

9.
A numerical procedure is devised to find binary collision orbits in the free-fall three-body problem. Applying this procedure, families of binary collision orbits are found and a sequence of triple collision orbits are positioned. A property of sets of binary collision orbits which is convenient to search triple collision orbits is found. Important numerical results are formulated and summarized in the final section.  相似文献   

10.
《Icarus》1986,66(2):324-329
There are several independent sources of evidence which suggest that the multiring basins of the lunar surface were created by the impact of natural satellites of the Moon, early in solar system history. If this hypothesis is correct the orbits of these primeval satellites would need to be stable for significant periods, to account for the known age differences of these basins. The stability of these primeval satellite orbits is considered. We find constraints on the satellite masses and initial orbits for long-term and short-term orbit stability. Dissipation due to lunar tidal friction may contribute significantly to the stability of close orbits.  相似文献   

11.
This paper analyzes the collision possibility for two satellites on Keplerian orbits. Coplanar and noncoplanar cases are considered, respectively. For each case, the problem of collision possibility analysis can be solved through two steps: First, to determine whether there is any intersection point of the two orbits; if there is no intersection point, the conclusion can be given directly that collision never happens. Secondly, if the two orbits do intersect, the collision possibility in the given time-scale can be studied in terms of the relationship between the two orbital periods and time. Numerical simulations for both cases, each including several situations, are given to prove the validity of the proposed collision criterion.  相似文献   

12.
T. Gold 《Icarus》1975,25(3):489-491
Grains, an abundant constituent of the former solar system, will have had a high probability of being driven into orbits resonant with major bodies already formed. This arises because of the presence of gas drag and Poynting-Robertson drag on small grains, providing the dissipation necessary to concentrate matter into special orbits. Since the mean density in resonant orbits can be built up by such a process without limit, these may become the favored orbits for gravitational contraction to gather material into major bodies. Satellite formation processes may therefore depend upon the buildup of resonant lanes of dust grains around the parent body. Saturn's rings are possibly one example of such lanes, though an unsuitable one for the final step of satellite formation on account of their being too close to Saturn.  相似文献   

13.
This paper presents the results of an investigation into the secular behavior of the orbits of the Galilean satellites of Jupiter. Kamel's perturbation method is used to remove all the explicitly periodic variables from the differential equations that describe the long period behavior of the orbits to third order in the masses, and the resulting differential equations for the secular behavior are then solved. Several numerical examples are given to illustrate the sensitivity of the solution to variations in the masses of the satellites.  相似文献   

14.
The problem of the secular perturbations of the orbit of a test satellite with a negligible mass caused by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun is considered. In contrast to the previous studies of this problem, an analytical expression for the full averaged perturbing function has been derived for an arbitrary orbital inclination of the test satellite. A numerical method has been used to solve the evolution system at arbitrary values of the constant parameters and initial elements. The behavior of some set of orbits in the region of an approximately equal influence of the perturbing factors under consideration has been studied for the satellite system of Uranus on time scales of the order of tens of thousands of years. The key role of the Lidov–Kozai effect for a qualitative explanation of the absence of small bodies in nearly circular equatorial orbits with semimajor axes exceeding ~1.8 million km has been revealed.  相似文献   

15.
We say that a planet is Earth-like if the coefficient of the second order zonal harmonic dominates all other coefficients in the gravity field. This paper concerns the zonal problem for satellites around an Earth-like planet, all other perturbations excluded. The potential contains all zonal coefficientsJ 2 throughJ 9. The model problem is averaged over the mean anomaly by a Lie transformation to the second order; we produce the resulting Hamiltonian as a Fourier series in the argument of perigee whose coefficients are algebraic functions of the eccentricity — not truncated power series. We then proceed to a global exploration of the equilibria in the averaged problem. These singularities which aerospace engineers know by the name of frozen orbits are located by solving the equilibria equations in two ways, (1) analytically in the neighborhood of either the zero eccentricity or the critical inclination, and (2) numerically by a Newton-Raphson iteration applied to an approximate position read from the color map of the phase flow. The analytical solutions we supply in full to assist space engineers in designing survey missions. We pay special attention to the manner in which additional zonal coefficients affect the evolution of bifurcations we had traced earlier in the main problem (J 2 only). In particular, we examine the manner in which the odd zonalJ 3 breaks the discrete symmetry inherent to the even zonal problem. In the even case, we find that Vinti's problem (J 4+J 2 2 =0) presents a degeneracy in the form of non-isolated equilibria; we surmise that the degeneracy is a reflection of the fact that Vinti's problem is separable. By numerical continuation we have discovered three families of frozen orbits in the full zonal problem under consideration; (1) a family of stable equilibria starting from the equatorial plane and tending to the critical inclination; (2) an unstable family arising from the bifurcation at the critical inclination; (3) a stable family also arising from that bifurcation and terminating with a polar orbit. Except in the neighborhood of the critical inclination, orbits in the stable families have very small eccentricities, and are thus well suited for survey missions.  相似文献   

16.
The short period luni-solar theory of Kozai is generalized for arbitrary obliquity of the ecliptic and inclination of the moon's orbit to the ecliptic. Analytic first order lunar perturbations to the elements are derived. The theory is illustrated by an application to the communication satellite Intelsat 3F3.Presently at the Department of Environmental Sciences, University of Tel Aviv, Ramat Aviv, Israel.  相似文献   

17.
Five methods for numerically integrating stellar orbits in a time-independent, steady potential are compared in efficiency and accuracy. The methods are: Fehlberg's (1972) treatment of the Runge-Kutta method, Krogh's (1971) variable-order Adam's method, an extrapolation method described by Stoer (1974) and two orders of the implicit single-sequence method of Everhart (1974). It is found that Fehlberg's 6th-order Runge-Kutta is the fastest but also the least accurate. The new method of Everhart seems a good compromise between efficiency and accuracy in this problem.  相似文献   

18.
In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133–160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits \( b_1 \Delta \varpi + b_2 \Delta \varOmega \), forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that \({>}20\) and \({>}40\%\) of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with \(b_1+|b_2|\le 3\) persist, while even higher-order resonances, up to \(b_1+|b_2|\ge 7\), survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.  相似文献   

19.
20.
Analytical methods for the orbits of artificial satellites of the Moon   总被引:2,自引:0,他引:2  
The motion of a close artificial satellite of the Moon is considered. The principal perturbations taken into account are caused by the nonsphericity of the Moon and the attraction of the Earth and the Sun. To begin with, the expansions of the disturbing functions due to the nonsphericity of the primary body and the action of the disturbing mass-point body have been derived. The second expansion is produced in terms of the Keplerian elements of a satellite and the spherical coordinates of the disturbing body. Both expansions are valid for an arbitrary reference plane. The motion of a satellite of the Moon is studied in the selenocentric coordinate system referred to the Lunar equator and rotating with respect to the fixed ecliptic system. However, the coordinate exes in the equatorial plane are chosen so that the angular speed of rotation of the system is small. The motion of the satellite is described by means of the contact elements which enable one to utilize the conventional Lagrange's planetary equations and may be regarded as the generalization of the notion of the osculating elements to the case of the disturbing function depending not only o the coordinates and the time but on the velocities as well. Two methods are proposed to represent the motion of Lunar satellites over long intervals of time: the von Zeipel method and the Euler method of analytical integration with application of the variation-of-elements technique at every step of integration. The second method is exposed in great detail.Presented at the Meeting of Commission 7 of the IAU on Analytical Methods for the Orbits of Artificial Celestial Objects 14-th General Assembly of the IAU, Brighton, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号