首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The statistical relation between the masses of supermassive black holes (SMBHs) in disk galaxies and the kinematic properties of their host galaxies is analyzed. Velocity estimates for several galaxies obtained earlier at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data for other galaxies taken from the literature are used. The SMBH masses correlate well with the rotational velocities at a distance of R ≈ 1 kpc, V 1, which characterize the mean density of the central region of the galaxy. The SMBH masses correlate appreciably weaker with the asymptotic velocity at large distances from the center and the angular velocity at the optical radius R 25. We have found for the first time a correlation between the SMBH mass and the total mass of the galaxy within the optical radius R 25, M 25, which includes both baryonic and “dark” mass. The masses of the nuclear star clusters in disk galaxies (based on the catalog of Seth et al.) are also related to the dynamical mass M 25; the correlations with the luminosity and rotational velocity of the disk are appreciably weaker. For a given value of M 25, the masses of the central cluster are, on average, an order of magnitude higher in S0-Sbc galaxies than in late-type galaxies, or than the SMBH masses. We suggest that the growth of the SMBH occurs in the forming “classical” bulge of the galaxy over a time < 109 yr, during a monolithic collapse of gas in the central region of the protogalaxy. The central star clusters form on a different time scale, and their stellar masses continue to grow for a long time after the growth of the central black hole has ceased, if this process is not hindered by activity of the nucleus.  相似文献   

2.
Estimates of the masses of supermassive black holes (M bh ) in the nuclei of disk galaxies with known rotation curves are compared with estimates of the rotational velocities V m and the “indicative” masses of the galaxies M i . Although there is a correlation between M bh and V m or M i , it is appreciably weaker than the correlation with the central velocity dispersion. The values of M bh for early-type galaxies (S0-Sab), which have more massive bulges, are, on average, higher than the values for late-type galaxies with the same rotational velocities. We conclude that the black-hole masses are determined primarily by the properties of the bulge and not the rotational velocity or the mass of the galaxy.  相似文献   

3.
A model for the formation of supermassive black holes at the center of a cluster of primordial black holes is developed. It is assumed that ~10?3 of the mass of the Universe consists of compact clusters of primordial black holes that arose as a result of phase transitions in the early Universe. These clusters also serve as centers for the condensation of dark matter. The formation of protogalaxies with masses of the order of 2 × 108 M at redshift z = 15 containing clusters of black holes is investigated. The nuclei of these protogalaxies contain central black holes with masses ~105 M , and the protogalaxies themselves resemble dwarf spherical galaxies with their maximum density at their centers. Subsequent merging of these induced protogalaxies with ordinary halos of dark matter leads to the standard picture for the formation of the large-scale structure of the Universe. The merging of the primordial black holes leads to the formation of supermassive black holes in galactic nuclei and produces the observed correlation between the mass of the central black hole and the bulge velocity dispersion.  相似文献   

4.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

5.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

6.
This is the first paper in a project aimed at analyzing relations between the masses of supermassive black holes or nuclear clusters in galaxies and the kinematic features of the host galaxies. We present long-slit spectroscopic observations of galaxies obtained on the 6-m telescope of the Special Astrophysical Observatory using the SCORPIO focal reducer. Radial profiles of the line-of-sight velocities and velocity dispersions of the stellar populations were obtained for seven galaxies with known masses of their supermassive black holes (Mkn 79, Mkn 279, NGC 2787, NGC 3245, NGC 3516, NGC 7457, and NGC 7469), and also for one galaxy with a nuclear cluster (NGC 428). Velocity profiles of the emitting gas were obtained for some of these galaxies as well. We present preliminary galactic rotation curves derived from these data.  相似文献   

7.
Data on about forty virialized galaxy clusters with bright central galaxies, for which both the galactic velocity dispersion (?? gal) and the stellar velocity dispersion in the brightest galaxies (??*) are measured, have been used to obtain several approximate relations between ?? gal, ??*, the absolute B magnitude of the brightest central galaxyM B BCG , and the mass of the central massive black holeM BH: $\begin{gathered} \log \sigma _* = (0.12 \pm 0.14)\log \sigma _{gal} + (2.1 \pm 0.4), \hfill \\ \log \sigma _* = - (0.15 \pm 0.02)M_B^{BCG} + (0.85 \pm 0.5), \hfill \\ \log M_{BH} = 0.51\log \sigma _{gal} + 7.28. \hfill \\ \end{gathered} $ . These relations can be used to derive crude estimates ofMBH in the nuclei of the brightest galaxies using the parameters of the both host galaxies and the host galaxy clusters. The last relation above confirms earlier suggestions of a quadratic relation between the masses of the coronas of the host systems and the masses their central objects: M hg halo ?? M cent 2 . The relations obtained are consistent with the common evolution of subsystems with different scales and masses formed in the process of hierarchical clustering.  相似文献   

8.
Black hole astrophysics is expected to have a major breakthrough any day. Theoretical understanding is well advanced, so the breakthrough has to come from observers. Conclusive and direct evidence of event horizons, signatures of tidal deformation of gas clouds (and eventual disappearance of matter behind horizons) could be obtained in matter of months. At this juncture, we wish to summarize how the subject came to this stage and what is the state-of-the-art flow solution around a black hole. We touch upon the most crucial issue of (un)predictability of this subject. We believe that if viscosity is roughly what MRI simulations are pointing to us, we still require very detailed knowledge of properties of the companion, especially time dependent mass transfer from the companion to the black hole.  相似文献   

9.
We present the results of population syntheses obtained using our “scenario machine.” The mass spectra of black holes in X-ray binary systems before and after the stage of accretion from an optical companion are obtained for various evolutionary scenarios. The results of the model computations are compared to observational data. The observational data are used to estimate the fraction of a presupernova’s mass that collapses into a black hole. This model can explain the formation of low-mass (2–4M) black holes in binary systems with optical companions. We show that the number of low-mass black holes in the Galaxy is sufficiently high for them to be detected. The population-synthesis results suggest that the vast majority of low-mass black holes are formed via the accretion-induced collapse of neutron stars. The percentage of low-mass black holes in binary systems that form due to accretion-induced collapse is 2–15% of the total number of black holes in binaries, depending on the evolutionary scenario.  相似文献   

10.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

11.
Long-term, multi-frequency monitoring of the radio fluxes of the four BL Lac objects 3C 120, OJ 287, 1308+326, and BL Lac is considered. Harmonic components of the flux variability on scales from one year to decades are determined. The observational data used were obtained at the Radio Astronomy Laboratory of the Crimean Astrophysical Observatory (Ukraine) and the University of Michigan Radio Astronomy Observatory (USA). These data are used to construct kinematic models for active galactic nuclei using values for the orbital and precessional periods of binary systems consisting of supermassive black holes. The derived speeds of the companions in their orbits lie in the narrow range 3000–4000 km/s. The orbital radii for the binary supermassive black holes also lie in a narrow range, 1017–1018 cm, providing evidence that observed prominent examples of active galactic nuclei are fairly close binary systems. The parameters of the mediumin which the components of the binary systems are moving are estimated, as well as the rates at which the systems are losing orbital angular momentum and their lifetimes to coalescence.  相似文献   

12.
Characteristic properties of the electromagnetic spectrum of a dipole freely falling radially toward a Schwartzschild black hole are determined. These properties can be used to determined the mass of the black hole, as well as some characteristics of the magnetosphere or accretion disk surrounding the black hole.  相似文献   

13.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

14.
If the linear polarization of the optical emission of active galactic nuclei (AGNs) arises in magnetized accretion disk (the Milne problem), the degree of polarization should depend strongly on the spin of the central black hole. For the same black hole luminosities and masses, the polarization is substantially higher for rotating Kerr than for non-rotating Schwarzschild black holes. Statistically, this means that the majority of AGNs displaying appreciable linear polarization should have Kerr black holes. The spin dependence of the polarization is due to the fact that the radius of the innermost stable circular orbit r isco depends on the spin—this radius is three gravitational radii for a Schwarzschild black hole, and a factor of six smaller for a rapidly rotating black hole. This means that the magnetic field in the region of emergence of the optical emission, which decreases with distance from r isco , is higher for a non-rotating than for a rapidly rotating black hole. This higher magnetic field gives rise to strong Faraday depolarization, explaining the effect considered here.  相似文献   

15.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

16.
The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30–100M . The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a “kick”—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.  相似文献   

17.
We consider the evolution of binary systems formed by a Supermassive Black Hole (SMBH) residing in the center of a galaxy or a globular cluster and a star in its immediate vicinity. The star is assumed to fill its Roche lobe, and the SMBH accretes primarily the matter of this star. The evolution of such a system is mainly determined by the same processes as for an ordinary binary. The main differences are that the donor star is irradiated by hard radiation emitted during accretion onto the SMBH; in a detached system, nearly all the donor wind is captured by the black hole, which strongly affects the evolution of the semi-major axis; it is not possible for companions of the most massive SMBHs to fill their Roche lobes, since the corresponding orbital separations are smaller than the radius of the last stable orbit in the gravitational field of the SMBH. Moreover, there may not be efficient exchange between the orbital angular momentum and the angular momentum of the overflowing matter in such systems. Our computations assumed that, if the characteristic timescale for mass transfer is smaller than the thermal timescale of the star, no momentum exchange occurs. Absorption of incident external radiation in the stellar envelope was treated using the same formalism that was used when computing the radiative transfer in the stellar atmosphere. Numerical simulations show that Roche-lobe overflow is possible for a broad range of initial system parameters. The evolution of semi-detached systems containing a star and a SMBH nearly always ends with the dynamical disruption of the star. Stars with masses close to the solar mass are destroyed immediately after they fill their Roche lobes. During the accretion of matter of disrupted stars, the SMBH can achieve quasar luminosities. If the SMBH accretes ambient gas as well as gas stripped from stars, the star is subject to additional radiation in the detached phase of its evolution, strengthening its stellar wind. This leads to an increase of the semi-major axis and subsequent decrease of the probability of Roche-lobe overflow during the subsequent evolution of the system.  相似文献   

18.
The paper is dedicated to the evolution of the views of I.S. Shklovskii on black holes, his contribution to studies of astrophysical manifestations of black holes, and subsequent studies of these surprising objects.  相似文献   

19.
We apply a population synthesis technique to study the formation and evolution of low-mass X-ray binaries with black holes, observed as X-ray novae, from hierarchical triple systems. A scenario is suggested in which an inner close binary system evolves into an X-ray system with a large mass ratio. The high rate of accretion onto the neutron star leads to a common envelope stage, which may result in the formation of a Thorne-Zytkow (TZ) object. During its evolution, the envelope of the TZ object expands, encompassing the third star. The recurrent common-envelope stage decreases the size of the orbit of the third star, leading to the formation of a lowmass X-ray nova with a black hole. The dynamical stability of triple systems automatically ensures that only lowmass X-ray novae form. We also consider the possible formation of an X-ray nova from a binary in the case of asymmetrical core collapse during a supernova explosion.  相似文献   

20.
Data on the dependences of the masses and bolometric luminosities of Active Galactic Nuclei on their cosmological redshifts are used to determine the redshift dependences of their X-ray luminosities and the kinetic powers of their relativistic jets. These results are used, in turn, to obtain the redshift dependence of the spins of the central supermassive black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号