首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

3.
The absence of memory in the climatic forcing of glaciers   总被引:1,自引:1,他引:0  
Glaciers respond to both long-term, persistent climate changes as well as the year-to-year variability that is inherent to a constant climate. Distinguishing between these two causes of length change is important for identifying the true climatic cause of past glacier fluctuations. A key step in addressing this is to determine the relative importance of year-to-year variability in climate relative to more persistent climate fluctuations. We address this question for European climate using several long-term observational records: a century-long, Europe-wide atmospheric gridded dataset; longer-term instrumental measurements of summertime temperature where available (up to 250 years); and seasonal and annual records of glacier mass balance (between 30 and 50 years). After linear detrending of the datasets, we find that throughout Europe persistence in both melt-season temperature and annual accumulation is generally indistinguishable from zero. The main exception is in Southern Europe where a degree of interannual persistence can be identified in summertime temperatures. On the basis of this analysis, we conclude that year-to-year variability dominates the natural climate forcing of glacier fluctuations on timescales up to a few centuries.  相似文献   

4.
Climates inferred from former glacier geometries in some areas exhibit discrepancies with regional palaeoclimates predicted by General Circulation Models (GCMs) and modelling of palaeoecological data, possibly as a consequence of their differing treatments of climatic seasonality. Since glacier-based climate reconstructions potentially offer an important tool in the calibration of GCMs, which themselves need validation if used to predict future climate scenarios, we attempt to resolve mismatches between these techniques by (1) investigating the influence of seasonality on glacier mass balance, and (2) refining the methodology used for the derivation of glacier-based palaeoclimates. Focussing on the Younger Dryas stadial glaciation of Scotland, northeast Atlantic, we show that sea-ice amplified seasonality led to a significantly drier climate than has been suggested by glacier-based interpretations. This was characterised by a relatively short ablation season and the survival of a more substantial winter snowpack. We suggest that if palaeoglaciological studies were to account for changes in seasonal temperature and precipitation variability, their results would agree more closely with the cold, arid, northeast Atlantic palaeoenvironment predicted by atmospheric modelling and northwest European pollen studies, and would therefore provide more accurate constraints for GCM calibration.  相似文献   

5.
A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958–1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from −17.1 to −23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box.  相似文献   

6.
This paper focuses on the rôle of accumulation and cloudiness changes in the response of the Greenland ice sheet to global warming. Changes in accumulation or cloudiness were often neglected, or coupled to temperature changes. We used model output on temperature, precipitation and cloudiness from a GCM (ECHAM4 T106). The GCM output was used to drive the Greenland model that exists of a vertically averaged ice flow model, coupled to a 1D surface energy balance model that calculates the ablation. Variables are temperature, accumulation and cloudiness. Sensitivity experiments with this model show that changes in accumulation are very important for the ice sheet mass balance, whereas cloudiness is of secondary importance. If the Greenland model is forced by the GCM output, the Greenland model is found to contribute 70% less to sea level rise after 70 years than is indicated by the results presented in the IPCC report. This large discrepancy is mainly due to the fact that the enhanced ablation is strongly compensated by increased accumulation. Comparing the result obtained here with changes in mass balance derived directly from the same general circulation model, indicates a 20% larger contribution to sea level. This increase is due to changes in ice flow, and a different method for the ablation calculation.  相似文献   

7.
 A seasonally and regionally differentiated glacier model is used to estimate the contribution that glaciers are likely to make to global sea level rise over a period of 70 years. A high resolution general circulation model (ECHAM4 T106) is used to estimate temperature and precipitation changes for a doubled CO2 climate and serves as input for the glacier model. Volume-area relations are used to take into account the reduction of glacier area resulting from greenhouse warming. Each glacieriated region has a specified glacier size distribution, defined by the number of glaciers in a size class and a mean area. Changes in glacier volume are calculated by a precipitation dependent mass balance sensitivity. The model predicts a global sea level rise of 57 mm over a period of 70 years. This corresponds to a sensitivity of 0.86 mm yr−1K−1. Assuming a constant glacier area as done in earlier work leads to an overestimation of 19% for the contribution to sea level rise. Received: 16 August 2000 / Accepted: 21 May 2001  相似文献   

8.
The Health of Glaciers: Recent Changes in Glacier Regime   总被引:2,自引:1,他引:2  
Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.  相似文献   

9.
Inferred climatic changes in southern Chile during the Last Glacial Maximum are modelled to investigate the role of the southern Westerlies on the region's glacial history. This is accomplished with a numerical model of the surface energy balance which derives glacial mass balance profiles from existing climatic stations. This provides an independent measure of the regional snowline which is compared with palaeoecological evidence of former snowlines.The modelled snowline mirrors the latitudinal trend of current glacier equilibrium line altitudes. It is most sensitive to temperature changes in regions with high precipitation (46°–50° S) and to precipitation changes in regions with lower precipitation totals (south of 50° and north of 40°). This differential sensitivity with latitude implies that glacial expansion in the region depends on a delicate interplay between cooling induced by the equatorward movement of the oceanic Antarctic Polar Front and access to precipitation comparable to or greater than that of today. The main conclusion is that glacial expansion in southern Chile is associated with the migration of the southern Westerlies towards the equator. The importance of migrating precipitation belts in permitting glacier growth carries the implication that maximum depression of the snowline is unlikely to have been contemporaneous from latitude to latitude.  相似文献   

10.
Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.  相似文献   

11.
The aim of this work is to assess potential future Antarctic surface mass balance changes, the underlying mechanisms, and the impact of these changes on global sea level. To this end, this paper presents simulations of the Antarctic climate for the end of the twentieth and twenty-first centuries. The simulations were carried out with a stretched-grid atmospheric general circulation model, allowing for high horizontal resolution (60 km) over Antarctica. It is found that the simulated present-day surface mass balance is skilful on continental scales. Errors on regional scales are moderate when observed sea surface conditions are used; more significant regional biases appear when sea surface conditions from a coupled model run are prescribed. The simulated Antarctic surface mass balance increases by 32 mm water equivalent per year in the next century, corresponding to a sea level decrease of 1.2 mm year−1 by the end of the twenty-first century. This surface mass balance increase is largely due to precipitation changes, while changes in snow melt and turbulent latent surface fluxes are weak. The temperature increase leads to an increased moisture transport towards the interior of the continent because of the higher moisture holding capacity of warmer air, but changes in atmospheric dynamics, in particular off the Antarctic coast, regionally modulate this signal.  相似文献   

12.
Temperature is often seen as the dominant control on inter-decadal glacier volume changes. However, despite regional warming over the past half-century, the glaciers of Mount Shasta have continued to expand following a contraction during a prolonged drought in the early twentieth century, indicating a greater sensitivity to precipitation than temperature. We use the 110 year record of fluctuations in Mount Shasta’s glaciers and climate to calibrate numerical glacier models of the two largest glaciers. The reconstructed balance and volume histories show a much greater correlation to precipitation than temperature and significant correlation to oscillatory modes of Pacific Ocean climate. An approximately 20% increase in precipitation is needed for every 1°C increase in temperature to maintain stability. Under continued historical trends, oscillations in climate modes and random variability will dominate inter-decadal variability in ice volume. Under the strong warming trend predicted by a regional climate model, the temperature trend will be the dominant forcing resulting in near total loss of Mount Shasta’s glaciers by the end of the twenty-first century.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

13.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   

14.
Response of the Antarctic ice sheet to future greenhouse warming   总被引:2,自引:0,他引:2  
Possible future changes in land ice volume are mentioned frequently as an important aspect of the greenhouse problem. This paper deals with the response of the Antarctic ice sheet and presents a tentative projection of changes in global sea level for the next few hundred years, due to changes in its surface mass balance. We imposed a temperature scenario, in which surface air temperature rises to 4.2° C in the year 2100 AD and is kept constant afterwards. As GCM studies seem to indicate a higher temperature increase in polar latitudes, the response to a more extreme scenario (warming doubled) has also been investigated. The mass balance model, driven by these temperature perturbations, consists of two parts: the accumulation rate is derived from present observed values and is consequently perturbed in proportion to the saturated vapour pressure at the temperature above the inversion layer. The ablation model is based on the degree-day method. It accounts for the daily temperature cycle, uses a different degree-day factor for snow and ice melting and treats refreezing of melt water in a simple way. According to this mass balance model, the amount of accumulation over the entire ice sheet is presently 24.06 × 1011 m3 of ice, and no runoff takes place. A 1°C uniform warming is then calculated to increase the overall mass balance by an amount of 1.43 × 1011 m3 of ice, corresponding to a lowering of global sea level with 0.36 mm/yr. A temperature increase of 5.3°C is needed for the increase in ablation to become more important than the increase in accumulation and the temperature would have to rise by as much as 11.4°C to produce a zero surface mass balance. Imposing the Bellagio-scenario and accumulating changes in mass balance forward in time (static response) would then lower global sea level by 9 cm by 2100 AD. In a subsequent run with a high-resolution 3-D thermomechanic model of the ice sheet, it turns out that the dynamic response of the ice sheet (as compared to the direct effect of the changes in surface mass balance) becomes significant after 100 years or so. Ice-discharge across the grounding-line increases, and eventually leads to grounding-line retreat. This is particularly evident in the extreme case scenario and is important along the Antarctic Peninsula and the overdeepened outlet glaciers along the East Antarctic coast. Grounding-line retreat in the Ross and Ronne-Filchner ice shelves, on the other hand, is small or absent.  相似文献   

15.
 A simple climate model has been developed to investigate the existence of the small ice cap instability in the Southern Hemisphere. The model consists of four coupled components: an atmospheric energy balance model, a thermodynamic snow-sea ice model, an oceanic mixed layer model and a terrestrial ice model. Results from a series of experiments involving different degrees of coupling in the model show that the instability appears only in those cases when an explicit representation of the Antarctic ice sheet is not included in the model. In order to determine which physical processes in the ice sheet model lead to a stabilization of the system we have conducted several sensitivity experiments in each of which a given ice sheet process has been removed from the control formulation of the model. Results from these experiments suggest that the feedback between the elevation of the ice sheet and the snow accumulation-ice ablation balance is responsible for the disappearance of the small ice cap instability in our simulation. In the model, the mass balance of the ice sheet depends on the air temperature at sea level corrected for altitude and it is, therefore, a function of surface elevation. This altitude-mass balance feedback effectively decouples the location of the ice edge from any specific sea level isotherm, thus decreasing the model sensitivity to the albedo-temperature feedback, which is responsible for the appearance of the instability. It is also shown that the elevation-radiative cooling feedback tends to stabilize the ice sheet, although its effect does not seem to be strong enough to remove the instability. Another interesting result is that for those simulations which include the terrestrial ice model with elevation-dependent surface mass balance, hysteresis is exhibited, where for a given level of external forcing, two stable solutions with different, non-zero ice-sheet volume and area and different air and ocean temperature fields occur. However, no unstable transition between the two solutions is ever observed. Our results suggest that the small ice cap instability mechanism could be unsuitable for explaining the inception of glaciation in Antarctica. Received: 14 April 1997 / Accepted: 22 October 1997  相似文献   

16.
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia.  相似文献   

17.
To predict the evolution of glaciers in an enhanced greenhouse climate, results from a global climate model, a glacier melt/accumulation model, and a glacier flow model were combined. The method was applied to Storglaciären, a small well-studied glacier in northern Sweden. The difference between the present climate and a 2 × CO2 climate around the year 2050 was extracted from a model experiment with the ECHAM4-T106 high resolution climate model for time slices at present and in 2050, using prescribed boundary conditions of sea surface temperature and sea-ice distribution, which are derived from a lower resolution transient run of the ECHAM4-T42/OPIC-coupled atmosphere ocean model between present and 2050. The local climatic conditions on the glacier for 2050 were obtained by adding the modelled local climate changes to the observed local present-day climate. The combination of the comprehensive models presented offers a tool to test and calibrate simplified models which are applicable to a much larger sample of glaciers. For the region of Storglaciären, the GCM projected temperature is found to increase most strongly during the winter months, but also shows a warming during the transition from spring to summer, and again between summer and fall, thus extending the melt season by three to four weeks. Precipitation, on the other hand, decreases by approximately 5% during May to September while there is a stronger increase of approximately 14% for the rest of the year. The consequent increase in winter accumulation on Storglaciären is more than compensated by the increase in ablation during the melt season. The glacier flow model predicts a 300 m retreat of the glacier terminus by the middle of the next century, and a loss of 30% of the present ice mass.  相似文献   

18.
Linear trend analysis of observational data combined with model diagnostics from an atmospheric general circulation model are employed to search for potential mechanisms related to the observed glacier retreat in the tropical Andes between 1950 and 1998. Observational evidence indicates that changes in precipitation amount or cloud cover over the last decades are minor in most regions and are therefore rather unlikely to have caused the observed retreat. The only exception is in southern Peru and western Bolivia where there is a general tendency toward slightly drier conditions. Near-surface temperature on the other hand has increased significantly throughout most of the tropical Andes. The temperature increase varies markedly between the eastern and western Andean slopes with a much larger temperature increase to the west. Simulations with the ECHAM-4 model, forced with observed global sea surface temperatures (SST) realistically reproduce the observed warming trend as well as the spatial trend pattern. Model results further suggest that a significant fraction of the observed warming can be traced to a concurrent rise in SST in the equatorial Pacific and that the markedly different trends in cloud cover to the east and west of the Andes contributed to the weaker warming east of the Andes in the model. The observed increase in relative humidity, derived from CRU 05 data, is also apparent in the model simulations, but on a regional scale the results between model and observations vary significantly. It is argued that changes in temperature and humidity are the primary cause for the observed glacier retreat during the 2nd half of the 20th century in the tropical Andes.  相似文献   

19.
作为全球能量水分循环的关键区域,青藏高原(下称高原)气候变化对高原及周边地区气候与环境变化具有重要影响.本文从高原表面增暖、辐射变化、降水的多尺度变率、表面风速及环境变化方面回顾了高原近60年来气候变化及其环境效应与物理机制的研究进展,并基于再分析和台站观测资料讨论了近10余年来高原表面温度和风速变化的特征及原因.最后...  相似文献   

20.
李文毅  张洋 《气象科学》2023,43(4):427-437
本文通过对观测和再分析数据采用最大协方差分析以及回归、合成等分析方法,研究了青藏高原夏季地表气温与南半球大气环流之间的遥相关关系。结果表明,前期(4月)南半球极地—中高纬度大气环流呈现负位势高度异常、较低纬度印度洋—西太平洋区域呈现正位势高度异常时,高原中部和东部大部分区域夏季出现暖异常。在上述遥相关中,印度洋—西太平洋海温异常可能起到了重要的中间桥梁作用。在高原夏季温度偏高的年份,前期跨赤道的印度洋—西太平洋海温也持续偏暖,带来的海陆热力对比减小、经向跨赤道气流减弱有利于削弱夏季的季风环流,使得高原夏季降水偏少,有利于形成高原夏季的暖异常。在这一高原气温—南半球大气环流的遥相关关系中,4月南半球的大气位势高度场异常和与印度洋—西太平洋海温异常相关的异常高度场分布也十分相似。这一前期的跨赤道区域海温异常与南半球中高纬度位势高度场异常的因果关系仍有待进一步揭示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号