首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A scenario is presented whereby CMEs and interplanetary shocks are consequences of a large scale rearrangement of the coronal magnetic field induced by the disconnection of field lines from the solar surface due to the emergence of flux with opposite polarity. In this scenario the CME is the mass released from the previously closed structure and the interplanetary shock is formed by the injection of faster solar wind from an extended or newly created coronal hole which results from the opening of the field lines. Here CMEs and interplanetary shocks are associated events, but not cause-effect related. Observational and computational evidence supporting this view is provided.  相似文献   

2.
We have analyzed the data for more than 12900 coronal mass ejections (CMEs) which were obtained by SOHO/LASCO during the period of 1996-2007. The online CME catalogue contains all major CMEs detected by LASCO C2 and C3 coronagraphs. Basically we determine the CME speeds from the linear and quadratic fits to the height-time measurements. It is found that linear (constant speed) fit is preferable for 90% of the CMEs. The distribution of speeds of CMEs in solar cycle 23 is presented along with those obtained by others. As expected, the speeds decrease in the decay phase of the cycle 23. There is an unusual drop in speed in the year 2001 and an abnormal increase in speed in the year 2003 due to the high concentration of CMEs, X-class soft X-ray flares, solar energetic particle (SEP) events and interplanetary shocks observed during October-November period called Halloween events.  相似文献   

3.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

4.
The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E≈ 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang–Sheeley–Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.  相似文献   

5.
We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ∼1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ∼2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.  相似文献   

6.
For the 2.5 year period from January 1, 1977 to June 30, 1979, we have correlated the positions of high latitude coronal holes, obtained from the He 10830 Å synoptic maps, with the velocities of solar wind streams, determined from interplanetary scintillation, that would have originated from these coronal holes. From 24 cases analyzed we find that these high latitude coronal holes are often, but not always, correlated with high speed solar wind streams. The lack of a much stronger correlation may be due to uncertainties in the boundaries of the coronal holes and in the velocities of the solar wind streams. It might also be due to the deflection or attenuation of relatively weak solar wind streams in interplanetary space.  相似文献   

7.
We studied the relation between the near-Earth signatures of the interplanetary coronal mass ejections (ICMEs) shocks such as sudden storms commencement (SSC), and their counterparts of coronal mass ejections (CMEs) observed near-Sun by solar and heliospheric observatory (SOHO)/large angle and spectrometric coronagraph (LASCO) coronagraph during 1996?C2008. Our result showed that there is a good correlation between the travel time of the ICMEs shocks and their associated radial speeds. Also we have separated the ICME shocks into two groups according to their effective acceleration and deceleration. The results showed that the faster ICME shocks (with negative accelerations which decelerated by solar wind plasma) are more correlated to their associated travel time than those with positive accelerations.  相似文献   

8.
This paper is a qualitative study of 42 events of solar filament/prominence sudden disappearances (“disparitions brusques”; henceforth DBs) around two solar minima, 1985 – 1986 and 1994. The studied events were classified as 17 thermal and 25 dynamic disappearances. Associated events, i.e. coronal mass ejections (CMEs), type II bursts, evolution of nearby coronal holes, as well as solar wind speed, and geomagnetic disturbances are discussed. We have found that about 50% of the thermal DBs with adjacent (within 15° from the DB) coronal holes were associated with CMEs within a selected time window. All the studied thermal disappearances with adjacent coronal holes or accompanied by dynamic disappearances were associated with weak and medium geomagnetic storms. Also, nearly 64% of dynamic DBs were associated with CMEs. Ten (40%) dynamic disappearances were associated with intense geomagnetic storms, even when no CMEs was reported, six (24%) dynamic disappearances corresponded to extreme storms, and five (20%) corresponded to medium geomagnetic storms. The extreme geomagnetic storms appeared to be related to combined events, involving dynamic disappearances with adjacent coronal holes or including thermal disappearances. Furthermore, the geomagnetic activity (Dst index) increased if the source was close to the central meridian (±30°). The highest interplanetary magnetic field (B), longest duration, lowest southward direction B z component, and lowest Dst were highly correlated for all studied events. The Sun – Earth transit time computed from the starting time of the sudden disappearance and the time its effect was measured at Earth was about 4.3 days and was mainly well correlated with the solar wind speed measured in situ (daily value).  相似文献   

9.

Forbush decreases (FDs) are sharp reductions of the cosmic-ray (CR) intensity, following intense solar activity such as coronal mass ejections (CMEs) and their corresponding interplanetary shocks. In some cases, shocks create sudden storm commencements (SSCs) at the Earth’s magnetosphere with significant interest for space-weather studies. Preincreases and/or predecreases of CR intensity before the onset of FDs, known as precursory signals, have been widely examined by many authors. In this work, an attempt to define precursory signals that are not related to SSCs is presented. For the present analysis, CR data recorded by the ground-based Neutron Monitor Network as well as data on solar flares, CMEs, solar-wind speed, interplanetary magnetic field, and geomagnetic indices for the years 1969?–?2019 are used. To identify FDs that present precursors, the adopted criteria are mainly the FD amplitude (> 2%) and the equatorial CR anisotropy before the onset time (> 0.8%). The analysis of FDs and the study of their asymptotic-longitude CR distribution for precursors are based on the Global Survey Method and the Ring of Stations Method, respectively. Precursory signals are identified in 17 out of 27 events without SSCs.

  相似文献   

10.
日冕物质抛射与共生射电爆发的地面和空间联测研究   总被引:1,自引:0,他引:1  
引述了近年来太阳和空间物理的一大研究成果;产生日地空间射电爆发和地球物理响应的主因不是太阳耀斑,而是日冕物质抛射(CME),论述了射电爆发在研究CME中的作用;分析了1991-06-15CME事件中射电爆发和质子事件产生的物理过程;介绍了地面/空间对CME和共生射电爆发联测研究的新进展;提出了我国今后开展地面/空间联测研究的设想和建议。  相似文献   

11.
We study the relationship between the speeds of coronal mass ejections (CMEs) obtained close to the Sun and in the interplanetary medium during the low solar-activity period from 2008 to 2010. We use a multi-spacecraft forward-modeling technique to fit a flux-rope-like model to white-light coronagraph images from the STEREO and SOHO spacecraft to estimate the geometrical configuration, propagation in three-dimensions (3D), and the radial speeds of the observed CMEs. The 3D speeds obtained in this way are used in existing CME travel-time prediction models. The results are compared to the actual CME transit times from the Sun to STEREO, ACE, and Wind spacecraft as well as to the transit times calculated using projected CME speeds. CME 3D speeds give slightly better predictions than projected CME speeds, but a large scatter is observed between the predicted and observed travel times, even when 3D speeds are used. We estimate the possible sources of errors and find a weak tendency for large interplanetary CMEs (ICMEs) with high magnetic fields to arrive faster than predicted and small, low-magnetic-field ICMEs to arrive later than predicted. The observed CME transit times from the Sun to 1?AU show a particularly good correlation with the upstream solar-wind speed. Similar trends have not been observed in previous studies using data sets near solar maximum. We suggest that near solar minimum a relatively narrow range of CME initial speeds, sizes, and magnetic-field magnitudes led to a situation where aerodynamic drag between CMEs and ambient solar wind was the primary cause of variations in CME arrival times from the Sun to 1?AU.  相似文献   

12.
Sunspots have a major 11-year cycle, but the years near the maximum show two or more peaks called Gnevyshev peaks. It was noticed that in cycle 23, the double peaks in sunspot numbers are reflected in the electromagnetic radiations and coronal mass ejections (CMEs) in the solar atmosphere. But, in the interplanetary space, the ICMEs (interplanetary CMEs) show peaks not all coinciding with the peaks of sunspot numbers. Also, there are stream interaction regions (SIR), including co-rotating interaction regions (CIR), which evolve quite differently from sunspot numbers. In the geomagnetic indices, the peaks are related mainly to the peaks in SIRs, indicating that geomagnetic indices have no direct relationship with most of the phenomena at the Sun but are responding only to the interplanetary blobs due to SIRs, which are more predominant in the declining phase of sunspot activity.  相似文献   

13.
A detailed statistical investigation of solar Type II radio bursts during the last solar maximum period 1999–2001 has been made to address the question if there exist two kinds of coronal shock sources. For this, the Type II bursts were classified into two classes: (i) those associated with flares only (Class I); and (ii) those associated with flares and CMEs (Class II) according to their temporal association. While the properties of all the type IIs agree in general with the common range of values, the properties of the shocks of the two classes differ slightly. For example, while the duration and shock speed for Class II are higher than those of Class I, the ending frequency for Class II is significantly lower. We have also examined in detail the physical association with other solar and interplanetary activities (Type IV bursts, Long Duration Events, Wind/WAVES deca-hectometric Type IIs, and interplanetary shocks) using the data in 2000. As a result, we have found noticeable differences between these two classes in terms of the following physical characteristics: First, the associations of these activities for Class II are much higher than those of Class I. Second, the correlation values between the flare parameters and the Type II properties for Class II are significantly smaller. Third, observed double Type IIs exist in only Class II events. The above results suggest that there are two kinds of coronal shocks or, rather, two general classes of coronal shock sources.  相似文献   

14.
A New Prediction Method for the Arrival Time of Interplanetary Shocks   总被引:3,自引:0,他引:3  
Solar transient activities such as solar flares, disappearing filaments, and coronal mass ejections (CMEs) are solar manifestations of interplanetary (IP) disturbances. Forecasting the arrival time at the near Earth space of the associated interplanetary shocks following these solar disturbances is an important aspect in space weather forecasting because the shock arrival usually marks the geomagnetic storm sudden commencement (SSC) when the IMF Bz component is appropriately southward and/or the solar wind dynamic pressure behind the shock is sufficiently large. Combining the analytical study for the propagation of the blast wave from a point source in a moving, steady-state, medium with variable density (wei, 1982; wei and dryer 1991) with the energy estimation method in the ISPM model (smith and dryer 1990, 1995), we present a new shock propagation model (called SPM below) for predicting the arrival time of interplanetary shocks at Earth. The duration of the X-ray flare, the initial shock speed and the total energy of the transient event are used for predicting the arrival of the associated shocks in our model. Especially, the background speed, i.e., the convection effect of the solar wind is considered in this model. Applying this model to 165 solar events during the periods of January 1979 to October 1989 and February 1997 to August 2002, we found that our model could be practically equivalent to the prevalent models of STOA, ISPM and HAFv.2 in forecasting the shock arrival time. The absolute error in the transit time in our model is not larger than those of the other three models for the same sample events. Also, the prediction test shows that the relative error of our model is ≤10% for 27.88% of all events, ≤30% for 71.52%, and ≤50% for 85.46%, which is comparable to the relative errors of the other models. These results might demonstrate a potential capability of our model in terms of real-time forecasting.  相似文献   

15.
Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU   总被引:1,自引:0,他引:1  
Based on the variations of sunspot numbers, we choose a 1-year interval at each solar minimum from the beginning of the acquisition of solar wind measurements in the ecliptic plane and at 1 AU. We take the period of July 2008??C?June 2009 to represent the solar minimum between Solar Cycles 23 and 24. In comparison with the previous three minima, this solar minimum has the slowest, least dense, and coolest solar wind, and the weakest magnetic field. As a result, the solar wind dynamic pressure, dawn?Cdusk electric field, and geomagnetic activity during this minimum are the weakest among the four minima. The weakening trend had already appeared during solar minimum 22/23, and it may continue into the next solar minimum. During this minimum, the galactic cosmic ray intensity reached the highest level in the space age, while the number of solar energetic proton events and the ground level enhancement events were the least. Using solar wind measurements near the Earth over 1995??C?2009, we have surveyed and characterized the large-scale solar wind structures, including fast-slow stream interaction regions (SIRs), interplanetary coronal mass ejections (ICMEs), and interplanetary shocks. Their solar cycle variations over the 15 years are studied comprehensively. In contrast with the previous minimum, we find that there are more SIRs and they recur more often during this minimum, probably because more low- and mid-latitude coronal holes and active regions emerged due to the weaker solar polar field than during the previous minimum. There are more shocks during this solar minimum, probably caused by the slower fast magnetosonic speed of the solar wind. The SIRs, ICMEs, and shocks during this minimum are generally weaker than during the previous minimum, but did not change as much as did the properties of the undisturbed solar wind.  相似文献   

16.
Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.  相似文献   

17.
It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 – 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.  相似文献   

18.
Recently,S.W.Kahler studied the timescales of solar energetic particle(SEP) events associated with coronal mass ejections(CMEs) from analysis of spacecraft data.They obtained different timescales for SEP events,such as TO,the onset time from CME launch to SEP onset,TR,the rise time from onset to half the peak intensity(0.5I_p),and TD,the duration of the SEP intensity above 0.5I_p.In this work,we solve the transport equation for SEPs considering interplanetary coronal mass ejection(ICME) shocks as energetic particle sources.With our modeling assumptions,our simulations show similar results to Kahler's analysis of spacecraft data,that the weighted average of TD increases with both CME speed and width.Moreover,from our simulation results,we suggest TD is directly dependent on CME speed,but not dependent on CME width,which were not found in the analysis of observational data.  相似文献   

19.
Coronal mass ejections (CMEs) and their interplanetary counterparts (interplanetary coronal mass ejections, ICMEs) are responsible for large solar energetic particle events and severe geomagnetic storms. They can modulate the intensity of Galactic cosmic rays, resulting in non-recurrent Forbush decreases (FDs). We investigate the connection between CME manifestations and FDs. We used specially processed data from the worldwide neutron monitor network to pinpoint the characteristics of the recorded FDs together with CME-related data from the detailed online catalog based upon the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) data. We report on the correlations of the FD magnitude to the CME initial speed, the ICME transit speed, and the maximum solar wind speed. Comparisons between the features of CMEs (mass, width, velocity) and the characteristics of FDs are also discussed. FD features for halo, partial halo, and non-halo CMEs are presented and discussed.  相似文献   

20.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号