首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the problem of assisting disc cutters by means of high-velocity jets of water, with the aim of increasing the excavation rate while improving the working conditions, with particular reference to wear. The results of an experimental research undertaken at the Waterjet Laboratory of the University of Cagliari on a medium–hard abrasive rock clearly show that a higher removal rate is achieved owing to the weakening action of a jet directed on one side of the disc, causing deeper penetration. This outcome is interpreted on the basis of the scale formation model, which explains why smaller scales are obtained on the water jet’s side of the groove. Accordingly, it is suggested that the results can be further improved if the jet is directed ahead of the tool along the same path, since, in this way, larger scales can be produced on both sides.  相似文献   

2.
As far as the bifurcated tunnel of underground engineering is concerned, it is usually used in the water conveyance system. Due to the complexity of underground rock masses and concrete lining, researches on mechanical characteristic and stability of the bifurcation tunnel have attracted more and more attention in the geotechnical field. In order to understand bifurcated tunnel in detail, three-dimensional (3D) numerical method is applied to solve the above key subjects by simulating a practical project. Furthermore, sub-model technology is applied to analyze the intersection position, corresponding deformation and stress results in the practical condition. Meanwhile, 3D excavation and support calculation under four conditions have been simulated based on 3D self-compiled code and Ansys software. In addition, the paper plays emphasis on the stress, displacement analysis considering different stress releasing ratio instead of rheological analysis, and the results corresponding with the fact indicate the feasibility of 3D elasto–visco–plastic code.  相似文献   

3.
Summary A series of numerical tests including both rock mechanics and fracture mechanics tests are conducted by the rock and tool (R–T2D) interaction code coupled with a heterogeneous masterial model to obtain the physical–mechanical properties and fracture toughness, as well as to simulate the crack initiation and propagation, and the fracture progressive process. The simulated results not only predict relatively accurate physical–mechanical parameters and fracture toughness, but also visually reproduce the fracture progressive process compared with the experimental and theoretical results. The detailed stress distribution and redistribution, crack nucleation and initiation, stable and unstable crack propagation, interaction and coalescence, and corresponding load–displacement curves can be proposed as benchmarks for experimental study and theoretical research on crack propagation. It is concluded that the heterogeneous material model is reasonable and the R–T2D code is stable, repeatable and a valuable numerical tool for research on the rock fracture process.  相似文献   

4.
 Spatial variations in the density and velocity fields have been observed in the Gareloch (Scotland) during surveys in 1987–1988 and 1993–1994. The variation of the density field has been analyzed on a variety of time scales from semidiurnal to seasonal in order to quantify effects caused by the forcing factors of tidal mixing, freshwater input, and wind. Initial results indicate that water density in the loch is controlled (to a major degree) by the freshwater input from runoff from the local catchment area and from freshwater entering on the flood tide from the Clyde Estuary. It is estimated that during winter periods the high freshwater flows from the rivers Leven and Clyde into the Clyde Estuary account for up to 75% of the freshwater creating the density structure in the loch. Analysis of long-term dissolved oxygen data reveals that major bottom water renewals occurred between July and January in the years 1987–1994. Major bottom water dissolved oxygen renewals have a general trend but during the year sporadic renewals can take place due to abnormal dry spells increasing the density of the water entering from the Clyde, or consistently strong winds from the north reducing stratification in the loch and producing better mixed conditions. Velocities vary spatially, with the highest velocities of up to 0.6 m s–1 being associated with the velocity jet effect at the constriction at the sill of the loch. Observed near-surface mid-loch velocities increased as the vertical density gradients in the upper layers increased. This indicates for the observed conditions that increased stratification in the upper layers inhibits the entrainment rate and hence rate of gain of thickness of the wind-driven surface layer, resulting in increased surface velocities for a given wind speed and direction. The main flow is concentrated in the upper 10 m and velocities below 10 m are low. Observed mean spring tide surface velocities are on average 30% greater than mean neap tide surface velocities. Received: 22 May 1995 · Accepted: 23 August 1995  相似文献   

5.
The cable shovel is widely used in surface mining. High operating and ownership costs necessitate efficient use of the cable shovel. Operator practices have long been suspected to contribute towards the inefficient use of the shovel. Crowd arm and hoist rope speeds are key measures of operator practices. The objective of this work is to find the crowd arm and hoist rope speeds for optimal shovel performance for given initial conditions and material properties. Shovel kinematics and dynamic modeling, using shovel geometry and the simultaneous constraint method, respectively, have been employed to build models of the excavation process. Dynamic models of the shovel payload and the material cutting resistance have also been developed using geometric simulation and passive soil pressures techniques, respectively. These models are solved numerically by combining Runge–Kutta and Gaussian elimination algorithms to compute the work done and the resistive forces during shovel excavation. The algorithms have been combined into a shovel simulator. The simulator has been used to simulate the P&H 2100BL shovel. The simulation results indicate that input energy and digging time increase with increasing crowd arm and decreasing hoist rope speeds. The input energy per unit loading rate is proposed as an appropriate measure of shovel performance. High energy per unit loading rate occurs for high crowd speeds and low hoist rope speeds. For the simulated conditions and crowd arm and hoist rope speeds ranging from 0.25 to 0.5 ms−1 and 0.5 to 0.7 ms−1, respectively, the optimal crowd arm and hoist rope speeds were found to be 0.25 ms−1 and 0.7 ms−1, respectively, and the objective function value was 0.21 KJs/kg. This work establishes, theoretically, the fact that operator practices have an effect on shovel performance and is useful in establishing optimum practices. The results are the initial steps towards full automation of the excavation process.  相似文献   

6.
This paper establishes a mechanical model of the stress distribution in front of the driving face during coal roadway excavation. Theoretical research shows that the stress state in the plastic zone of the driving face is consistent with the limit equilibrium equation, and the elastic zone is in accordance with the equilibrium equation based on elasticity mechanics. Based on this improved mechanical state solution model, different coal material constitutive hypotheses are used for the analysis. The width of the plastic zone calculated under the brittle-perfectly elastic model can reach 2–5 times the height of the roadway, and the stress concentration coefficient can reach two or more times. 3DEC numerical simulation software was used to simulate the stress distribution of the heading face. The results of the simulation are similar to those of the theoretical analysis. Compared with the elastic-perfectly plastic model, the calculated results of the brittle-perfectly elastic model are more consistent with the numerical simulation results. The heading face coal during roadway excavation shows obvious damage, and the strength characteristics of the coal decrease.  相似文献   

7.
In the context of a research and development program on waste disposal, an experimental site (Tournemire tunnel, Aveyron, France) was selected by the French Institute for Nuclear Protection and Safety (IPSN) in order to undertake studies on potential fluid flow at different scales of space and time within a 250-m-thick argillaceous formation. The argillite has a low natural water content (~3–5%) and very low radii access porosity. Diffusion (tritiated water) coefficients (1×10–12 to 2×10–11 m2/s) and hydraulic conductivities derived from different types of laboratory tests (10–14 to 10–13 m/s) are characteristics of a very low-permeable rock. In situ hydraulic tests (including long-term hydraulic-head measurements) were used to obtain values for hydraulic head and hydraulic conductivity at a scale of 1–10 m (10–13 to 10–11 m/s). Despite uncertainties on these data (due to a scale factor, presence of fissures, and possible artefacts due to hydro-chemo-mechanical coupling), it is expected that fluid flow is essentially governed by diffusion processes. Identification of possible natural flows at larger scales of time and space was investigated using natural isotopic tracers from interstitial fluids. Modelling, based on the deuterium profile along the clay formation and assuming pure diffusion processes, provides estimations of possible flow times. However, lack of knowledge concerning the past geological evolution of the site and the possible role of a fracture network do not permit reduction of uncertainties on these estimations at this stage. Electronic Publication  相似文献   

8.
One important decision in design of surface mine is the selection of mine equipment and plant. Demand for mechanical excavation is growing in mining industry because of its high productivity and excavation in large scale with lower costs. Several models have been developed over the years to evaluate the ease of excavation and machine performance against rock mass properties. Due to complexity of excavation process and large number of effective parameters, approaches made for this purpose are essentially empirical. There are many uncertainties in results of these models. An attempt is made in this paper to revise the exisiting models. Neural network models for estimation of rock mass excavatability and production rate of VASM-2D excavating machine at Limestone quarry in Retznei, Austria, is presented. Input parameters of this model are Uniaxial compressive strength, tensile strength and discontinuities spacing of rocks. Output is the specific excavation rate per power consumption (bcm/Kwh) as the productivity indicator. Average of deviation between actual data and results estimated by neural network model was only 15% which is in an acceptable range.  相似文献   

9.
Karst rocky desertification is a process of land degradation involving serious soil erosion, extensive exposure of basement rocks. It leads to drastic decrease in soil productivity and formation of a desert-like landscape. In this regard, changes in climatic conditions are the main origin of the soils degradation. Indeed, soils subjected to successive dry/wet cycling processes caused by climate change develop swelling and shrinkage deformations which can modify their water retention properties, thus inducing the degradation of soil–water capacity. The ecological characteristics of cultivation soils in karst areas, Southwest of China, are extremely easy to be affected by external environmental factors due to its shallow bedding and low vegetation coverage. Based on the analysis of the climate (precipitation) of this region during the past decades, an experimental study has been conducted on a cultivated soil obtained from the typical karst area in southwestern China. Firstly, the soil–water properties have been investigated. The measured soil–water retention curve shows that the air-entry value of the soil is between 50 and 60 kPa, while the residual saturation is about 12%. Based on the experimental results, three identifiable stages of de-saturation have been defined. Secondly, a special apparatus was developed to investigate the volume change behavior of the soil with controlled suction cycles. The vapor equilibrium technique was used for the suction control. The obtained results show that under the effect of dry/wet cycles, (1) the void ratio of the cultivated soil is continuously decreasing, leading to a gradual soil compaction. (2) The permeability decreases, giving rise to a deterioration of water transfer ability as well as a deterioration of soil–water retention capacity. It is then obvious that the long-term dry/wet cycling process caused by the climate change induce a continuously compaction and degradation of the cultivated soil in karst rocky desertification areas.  相似文献   

10.
The study of the creation and evolution of the excavation disturbed zone (EDZ) in argillaceous rocks is a major issue for the safety of nuclear wastes underground repositories. In this context, the argillaceous Tournemire site has provided a unique opportunity to study the evolution of the EDZ with time thanks to the existence of three openings of different ages. A thorough characterization of the EDZ has been conducted by different means such as visual observation, analysis of samples extracted from drilled boreholes, EDZ permeability measurements, etc. On the basis of these measurements, a conceptual model of the EDZ initiation and propagation at the Tournemire site has been proposed. In order to validate this model, numerical simulations of increasing complexity have been carried out. In a first attempt, the response of the rock mass to the excavation phase, followed by seasonal cyclic variations of temperature and relative humidity inside the opening, has been simulated by means of a purely mechanical analysis, using a simple elastic material model. The EDZ has been estimated by post-processing the calculated stress states, using a Mohr–Coulomb failure criterion. The results obtained show that no EDZ could be predicted unless adopting a low cohesion value for the rock mass. Moreover, the deferred nature of the EDZ formation in Tournemire could not be reproduced. These limitations have then been suppressed by using a coupled viscoplastic-damaging mechanical model, the parameters of which have been identified from different laboratory experiments. With this model, a time evolution of the EDZ could be predicted, but the EDZ pattern could not match the one observed in situ. Finally, in view of the importance of the hydraulic couplings, unsaturated hydro-mechanical calculations have been carried out to investigate the effect of the numerous seasonal variations cycles and the resulting shrinkage.  相似文献   

11.
We have explored first-principles molecular dynamics simulation data for hydrous MgSiO3 liquid (with 10 wt% water) to gain insight into its structural and dynamical behavior as a function of pressure (0–150 GPa) and temperature (2,000–6,000 K). By visualizing/analyzing a number of parameters associated with short- and mid-range orders, we have shown that the melt structure changes substantially on compression. The speciation of the water component at low pressures is dominated by the isolated structures (with over 90% hydrogen participated) consisting of hydroxyls, water molecules, O–H–O bridging and four-atom (O–H–O–H and H–O–H–O) groups, where every oxygen atom may be a part of polyhedron or free (i.e., bound to only magnesium atom). Hydroxyls favor polyhedral sites over magnesium sites whereas molecular water is almost entirely bound to magnesium sites, and also interpolyhedral bridging (Si–O–H–O–Si) dominates other types of bridging. Water content is shown to enhance and suppress, respectively, the proportions of hydroxyls and molecular water. As compression increases, these isolated structures increasingly combine with each other to form extended structures involving a total of five or more O and H atoms and also containing threefold coordination species, which together consume over 80% hydrogen at the highest compression studied. Our results show that water lowers the mean coordination numbers of different types including all cation–anion environments. The hydrous melt tends to be more tetrahedrally coordinated but with the Si–Si network being more disrupted compared to the anhydrous melt. Protons increase the content of non-bridging oxygen and decrease the contents of bridging oxygen as well as oxygen triclusters (present at pressures above 10 GPa). The calculated self-diffusion coefficients of all atomic species are enhanced in the presence of water compared to those of the anhydrous melt. This is consistent with the prediction that water depolymerizes the melt structure at all pressures. Our analysis also suggests that proton diffusion involves two processes—the transfer of H atoms (requiring the rupture and formation of O–H bonds) and the motion of hydroxyls as hydrogen carriers (requiring the rupture and formation of Si–O and/or Mg–O bonds). Both the processes are operative at low compression whereas only the first process is operative at high compression.  相似文献   

12.
Hydraulic fills used in Australian mines have similar grain size distributions whilst having quite different specific gravity values, typically in the range of 2.7–4.4. When produced and distributed in slurry at 65–75% by solid content, they settle to produce fills with similar geotechnical characteristics. The fills under investigation have been found to settle, in the laboratory, to a dry density of about 0.56 × specific gravity, a saturation water content of about 17–34%, and a porosity of 37–49%. A quick estimate of the optimum water content that gives the minimum porosity may be obtained by locating the intersection of the saturation curve and minimum porosity line, which may simply be done on a water content vs. porosity plot. However, transportability of the slurry requires it to be mixed at water content substantially greater than the optimum water content. As the tailings settle out of suspension, they settle to relative density of 50–80%. This paper shows that the current empirical relationships relating relative density and N-value to friction angle for sands will significantly underestimate the friction angle of the hydraulic fills. Based on limited experimental data, a unique relationship between relative density and friction angle is proposed for hydraulic fills placed in some Australian mines.  相似文献   

13.
Characterisation of mine waste rock with respect to acid generation potential is a necessary part of routine mine operations, so that environmentally benign waste rock stacks can be constructed for permanent storage. Standard static characterisation techniques, such as acid neutralisation capacity (ANC), maximum potential acidity, and associated acid–base accounting, require laboratory tests that can be difficult to obtain rapidly at remote mine sites. We show that a combination of paste pH and a simple portable carbonate dissolution test, both techniques that can be done in the field in a 15 min time-frame, is useful for distinguishing rocks that are potentially acid-forming from those that are acid-neutralising. Use of these techniques could allow characterisation of mine wastes at the metre scale during mine excavation operations. Our application of these techniques to pyrite-bearing (total S = 1–4 wt%) but variably calcareous coal mine overburden shows that there is a strong correlation between the portable carbonate dissolution technique and laboratory-determined ANC measurements (range of 0–10 wt% calcite equivalent). Paste pH measurements on the same rocks are bimodal, with high-sulphur, low-calcite rocks yielding pH near 3 after 10 min, whereas high-ANC rocks yield paste pH of 7–8. In our coal mine example, the field tests were most effective when used in conjunction with stratigraphy. However, the same field tests have potential for routine use in any mine in which distinction of acid-generating rocks from acid-neutralising rocks is required. Calibration of field-based acid–base accounting characteristics of the rocks with laboratory-based static and/or kinetic tests is still necessary.  相似文献   

14.
通过实验室研究,提出了三重管高压喷射注浆时,喷射流轴心压力与被冲击土介质的物理力学参数之间的关系式,并将其成果应用到某工程的污水池软基处理工程中,取得了预期的加固效果。  相似文献   

15.
 We carried out a series of melting experiments with hydrous primitive mantle compositions to determine the stability of dense hydrous phases under high pressures. Phase relations in the CaO–MgO–Al2O3–SiO2 pyrolite with ˜2 wt% of water have been determined in the pressure range of 10–25 GPa and in the temperature range between 800 and 1400 °C. We have found that phase E coexisting with olivine is stable at 10–12 GPa and below 1050 °C. Phase E coexisting with wadsleyite is stable at 14–16 GPa and below 900 °C. A superhydrous phase B is stable in pyrolite below 1100 °C at 18.5 GPa and below 1300 °C at 25 GPa. No hydrous phases other than wadsleyite are stable in pyrolite at 14–17 GPa and 900–1100 °C, suggesting a gap in the stability of dense hydrous magnesium silicates (DHMS). We detected an expansion in the stability field of wadsleyite to lower pressures (12 GPa and 1000 °C). The H2O content of wadsleyite was found to decrease not only with increasing temperature but also with increasing pressure. The DHMS phases could exist in a pyrolitic composition only under the conditions present in the subducting slabs descending into the lower mantle. Under the normal mantle and hot plume conditions, wadsleyite and ringwoodite are the major H2O-bearing phases. The top of the transition zone could be enriched in H2O in accordance with the observed increase in water solubility in wadsleyite with decreasing pressure. As a consequence of the thermal equilibration between the subducting slabs and the ambient mantle, the uppermost lower mantle could be an important zone of dehydration, providing fluid for the rising plumes. Received: 9 September 2002 / Accepted: 11 January 2003 Acknowledgements The authors are thankful to Y. Ito for the assistance with the EPMA measurement, A. Suzuki, T. Kubo and T. Kondo for technical help with the high-pressure experiments and Raman and X-ray diffraction measurements and C.R. Menako for technical support. K. Litasov thanks H. Taniguchi for his continuous encouragement and the Center for Northeast Asian Studies of Tohoku University and the Japanese Society for the Promotion of Science for the research fellowships. This work was partially supported by the Grant-in-Aid of Scientific Research of the Priority Area (B) of the Ministry of Education, Science, Sport, and Culture of the Japanese government (no. 12126201) to E. Ohtani.  相似文献   

16.
A Shear Model Accounting Scale Effect in Rock Joints Behavior   总被引:1,自引:0,他引:1  
Understanding the scale effect on the mechanical behavior of a single rock joint is still very important in rock engineering. Rock joints can be classified into three different categories depending on their scale: the “micro scale” which is the scale of the asperities; the “meso scale” is the scale of the specimens tested in laboratory; and the “macro scale” which is the scale of the rock mass. The purpose of this paper is to propose an effective way to model rock joints at both the meso and macro scale. An original constitutive mechanical model, in which parameters are deduced from experimental results, has been developed. This model is then extended to simulate the discontinuities occurring at a larger size. At the macro scale, the constitutive modeling was carried out for both small and large relative displacements. Large displacements lead to substantial changes in dilation. For both cases, the peak shear stress vanishes for joints longer than 2 m.  相似文献   

17.
The paper presents the results of an experimental study on the effects of the initial water content and dry density on the soil–water retention curve and the shrinkage behavior of a compacted Lias-clay. The initial conditions after compaction (initial water content and initial dry density) have been chosen on the basis of three Proctor tests of different compaction efforts. According to the eight chosen initial conditions clay samples have been compacted statically. The relation between total suction and water content was determined for the drying path starting from the initial conditions without previous saturation of the specimens. A chilled-mirror dew-point hygrometer was used for the suction measurements. For the investigation of the shrinkage behavior cylindrical specimens were dried to desired water contents step-by-step without previous saturation. The volume of the specimens was measured by means of a caliper. Based on the test results the influence of different initial conditions on the soil suction and the shrinkage behavior is analyzed. The soil–water retention curves obtained in terms of the gravimetric water content are independent of the initial dry density. At water contents above approximately 11–12.5% a strong influence of the compaction water content is observed. At smaller water contents, the soil–water retention curve is independent of the compaction water content. The results of the shrinkage tests show that the influence of the compaction dry density on the shrinkage behavior is negligible. Similar to the drying behavior of saturated samples a primary and a residual drying process could be distinguished. The primary drying process is strongly influenced by the initial water content. In contrast, the rate of the volume change of the residual drying process is unaffected by the initial water content.  相似文献   

18.
Characterization of Effective Parameters in Abrasive Waterjet Rock Cutting   总被引:2,自引:1,他引:1  
The rock cutting performance of an abrasive waterjet is affected by various parameters. In this study, rock cutting tests are conducted with different energy (i.e., water pressure, traverse speed, and abrasive feed rate), geometry (i.e., standoff distance), and material parameters [i.e., uniaxial compressive strength (UCS)]. In particular, experimental tests are carried out at a long standoff distance (up to 60 cm) to consider field application. The effective parameters of the rock cutting process are identified based on the relationships between the cutting performance indices (depth, width, and volume) and parameters. In addition, the cutting efficiency is analyzed with effective parameters as well as different pump types and the number of cutting passes considering the concept of kinetic jet energy. Efficiency analysis reveals that the cutting depth efficiency tends to increase with an increase in the water pressure and traverse speed and with a decrease in the standoff distance and UCS. Cutting volume efficiency strongly depends on standoff distance. High efficiency of cutting volume is obtained at a long standoff distance regardless of the pump type. The efficiency analysis provides a realistic way to optimize parameters for abrasive waterjet rock excavation.  相似文献   

19.
The study area, the middle part of Inner Mongolia including Hohhot city, Baotou city, Wulanchabu city, Ordos city, Bayannaoer city and Wuhai city, is one of typical eco-geographical transition zones in China. Using monthly precipitation data (1961–2003) from 45 meteorological stations in the study area, this paper analyzes characteristics and tendencies of annual and seasonal rainfall variations, and reveals multi-time scales structures of these time series through wavelet analyses; also, the periods of annual and seasonal precipitation series are identified, and the periodical oscillations and points of abrupt change at the principal period scale are discovered. The results show that annual precipitation varies in a large range, and has an ascending tendency at an increasing rate of 1.482 mm/10a; the multi-time scales periodical oscillations are clear; differences in tendencies, ranges and decadal precipitation anomalies exist within each decade during 1961–2000. The seasonal allocation of overall annual precipitation is extremely uneven; in terms of tendencies of seasonal precipitation, winter and spring have upward trends while summer and autumn have downward tendencies; distinctions in tendencies, ranges and decadal precipitation anomalies among each seasons are in existence within each decade during 1961–2000. The periodical oscillations of each seasonal precipitation time series are also evident. The research results not only provide convincing evidence for global climate change research, but also facilitate the understanding of specific natural process and pattern to make steps to rehabilitate and reconstruct vegetation, and contribute to fulfill the sustainability of water management.  相似文献   

20.
The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9 MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress–strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号