共查询到20条相似文献,搜索用时 0 毫秒
1.
Izvestiya, Atmospheric and Oceanic Physics - The natural variability of regional climatic conditions poses certain difficulties in detecting global climate change at a local scale. The question... 相似文献
2.
虽然全球平均表面气温不断升高,但在冬季欧亚大陆经常出现年际-年代际尺度上的变冷趋势。利用美国国家环境预报中心(National Centers for Environmental Prediction, NCEP)再分析资料,指出冬季影响欧亚大陆变冷的大气环流主要是北大西洋涛动(North Atlantic Oscillation, NAO)和乌拉尔山阻塞(Ural blocking, UB)的环流组合。其中,NAO环流可以在年际尺度上作为背景环流影响UB过程对欧亚低温天气的作用。统计分析发现,在NAO正(负)位相(NAO +/NAO -)环流背景下UB的发生频率可以解释冬季平均UB发生频率的52%(13%),表明NAO +环流有利于下游阻塞形势出现。尽管如此,研究发现在NAO -环流背景下的UB事件平均给欧亚地区带来的降温幅度更强,约是NAO +环流背景下的2倍,而且亚洲降温区的位置偏北约5°、偏东约13.5°。中等强度的NAO +环流背景下UB事件对欧亚降温的贡献... 相似文献
3.
Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The “teleconnections” linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project. 相似文献
4.
为了探索北大西洋涛动形成的大尺度大气物理场背景条件和外部强迫因子,通过对比分析、相关分析和环流系统温压场垂直结构分析得到:(1)强火山活动指数距平与冰岛低压和亚速尔高压海平面气压场(SLP)距平总体相关函数符号相反,强火山活动指数与冰岛低压SLP为反相关,与亚速尔高压SLP为正相关,就是说火山活动指数异常引起了高纬度冰岛低压和中低纬度亚速尔高压海平面气压场相反的变化趋势,形成高低纬之间海平面气压场反相振荡;(2)夏季7月亚速尔高压对流层中下层至海平面,温度距平中心和位势高度距平中心距平符号大致正正相对负负相对,说明夏季亚速尔高压为深厚暖性系统,低层温度升高亚速尔高压加强,低层温度降低亚速尔高压减弱,所以火山活动指数与亚速尔高压SLP均呈反相关关系;冬季1月对流层中下层至海平面,温度距平和位势高度距平符号大致正负相对,说明冬季亚速尔高压为浅薄系统,低层温度升高亚速尔高压减弱,低层温度降低亚速尔高压加强,所以火山活动指数与亚速尔高压SLP均呈正相关关系;(3)冬季1月冰岛低压对流层中下层至海平面,温度距平中心和位势高度距平中心距平符号大致正正相对负负相对,说明冬季冰岛低压为深厚冷性系统,低层温度升高冰岛低压减弱,低层温度降低冰岛低压加深,所以火山活动指数与冰岛低压SLP均呈反相关关系;夏季7月对流层中下层至海平面,温度距平和位势高度距平符号大致正负相对,说明夏季冰岛低压为浅薄系统,低层温度升高冰岛低压减弱,低层温度降低冰岛低压加深,所以火山活动指数与冰岛低压SLP均呈正相关关系;(4).由于对流层中下层至海平面冰岛低压和亚速尔高压冬、夏季温压场结构特点基本相反,火山活动指数异常在两个环流系统中引起了相反响应,导致高低纬之间海平面气压场反相振荡,形成了影响广泛的著名的北大西洋涛动现象。 相似文献
6.
利用NCEP大气环流模式,模拟了亚洲季风区气候对北大西洋正、负海温异常的响应。研究表明:亚洲季风区气候对北大西洋年代际振荡(AMO)的影响存在线性和非线性响应;AMO的暖位相造成欧亚大陆增温以及印度地区北暖南冷的偶极子型分布,主要是线性因素的作用;夏季、秋季印度半岛降雨增多,是线性因素和非线性因素共同作用的结果,且非线性因素带给印度半岛的降水多集中在西部。 相似文献
7.
In recent decades it has been recognized that in the North Atlantic climatic variability has been largely driven by atmospheric forcing related to the North Atlantic Oscillation (NAO). The NAO index began a pronounced decline around 1950 to a low in the 1960s. From 1970 onward the NAO index increased to its most extreme and persistent positive phase during the late 1980s and early 1990s. Changes in the pattern of the NAO have differential impacts on the opposite sides of the North Atlantic and differential impacts in the north and south. The changes in climate resulting from changes in the NAO appear to have had substantial impacts on marine ecosystems, in particular, on fish productivity, with the effects varying from region to region. An examination of several species and stocks, e.g. gadoids, herring and plankton in the Northeast Atlantic and cod and shellfish in the Northwest Atlantic, indicates that there is a link between long-term trends in the NAO and the productivity of various components of the marine ecosystem. While broad trends are evident, the mechanisms are poorly understood. Further research is needed to improve our understanding of how this climate variability affects the productivity of various components of the North Atlantic marine ecosystem. 相似文献
8.
At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant ( p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant ( p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic. 相似文献
9.
近10年来,新仙女木亚冰期的机制和气候意义引起了学者的广泛关注,格陵兰冰心计划(GRIP)在Summit钻探的冰心中已经确定出这个寒冷事件,并定义为格陵兰亚冰期1(GS1),年代为12650~115000cal.aBP。总的来说,GS-1是稳定的,它的寒冷阶段开始和结束地非常快(在几十年之内),这在整个北大西洋地区许多钻孔中都得到了证实。 相似文献
10.
Izvestiya, Atmospheric and Oceanic Physics - The meridional structure of climatic trends and anomalies of potential temperature and salinity in the North Atlantic waters in different periods of the... 相似文献
11.
许多研究认为,只有北大西洋涛动(NAO)是一种具有物理意义的模态,而北极涛动(AO)则是EOF分解得到的一种统计假象模态。为了从一个新的角度进一步探讨二者的差别,我们运用附条件的最大协方差分析(CMCA)统计了前期北极边缘海冰密集度(MSCI)与来年冬季NAO之间的跨季节遥相关关系,其中的ENSO信号和线性趋势已经在分析之前被去除。统计显著性结果表明:冬季负位相的NAO信号可以追溯到6个月前自盛夏开始至早冬季节北极MSCI异常的逐步演变。然而根据先前的研究,北极海冰异常仅可以超前冬季AO 大概4个月表现出显著信号。这表明盛夏北极MSCI的持续异常对来年冬季NAO的影响比对AO更强,同时也从另一个角度证实了AO与NAO确实存在差异。进一步分析还表明,前期MSCI异常的逐步演变主要与海表面热通量及气温异常有关。此外,我们还重新审视了负位相的NAO对北半球冬季气候异常的影响以及可能的物理机制。 相似文献
13.
This paper studies the causes and mechanisms of the formation of extreme anomalies in the tropospheric temperature associated
with the North Atlantic Oscillation (NAO). Our approach is based on understanding that, in the annual cycle, continental-scale
tropospheric temperature anomalies (planetary waves with longitudinal wave numbers of 1–3) can both intensify under the direct
action of heat inflow as an energy source for these anomalies (radiation cooling/heating) and weaken as a result of the destructive
action of heat inflow under temperature advections with the opposite (to the heat inflow) sign [4, 5]. According to the monthly
mean data of the NCEP/NCAR reanalysis over the 40-year period, seasonal air temperature anomalies have been studied at the
level 850 hPa ( T
850) in different regions of Eurasia. It has been confirmed that the negative NAO phase in winter is favorable for preserving
negative T
850 anomalies in the east of the continent at this time of year, whereas the positive NAO phase is favorable for negative T
850 anomalies in the west. However, it has been revealed that this dependence was critically violated during the winter seasons
approximately two years before an extreme event. This was explained by the fact that, in those years, the NAO influence on
winter T
850 anomalies was limited. This paper formally considers a certain mechanism of anomalous heat inflow as an energy source for
these anomalies with functions of the formation (intensification) of negative T
850 anomalies in winter and positive T
850 anomalies in summer, as well as with a function of the limitation of the influence of the predominant dynamic mode on some
regions of the continent. It is shown that, in the 1960s, T
850 anomalies with negative NAO indices in the east of the continent were governed by a hypothetic mechanism of heat inflow as
an energy source for anomalies; in 1980s, at prolonged positive NAO indices, T
850 anomalies in the west of the continent could also be governed by this mechanism. This paper, within the accepted degree of
detail, demonstrates the process of limitation of the NAO influence in some years (1966, 1967, 1987, and 1988), which leads
to an unbalance of the anomalies and a possible extreme phenomenon. It is demonstrated that, in some seasons, the anomalies
were not governed by the hypothetic mechanism of the heat inflow under the action of large NAO changes and a complete upset
of the annual cycle of anomalies. Determining the first indicators of the unbalance, which can lead to extreme anomalies,
is shown to be difficult if it is based only on an analysis of winter seasons (as is the case with most of the works) without
invoking the annual trends of the tropospheric temperature and the NAO index. 相似文献
16.
Izvestiya, Atmospheric and Oceanic Physics - Zonally averaged characteristics of the North Atlantic (NA) thermohaline circulation are investigated in different phases of the Atlantic Multidecadal... 相似文献
18.
We investigate an ambiguity in the current understanding of the Gulf Stream (GS) transport in response to the North Atlantic Oscillation (NAO). While some investigations (discussed herein) suggest enhanced transport during low NAO phases, other studies suggest enhanced transport in high NAO phases. NAO-induced variability in the western North Atlantic is studied by using a 1/6°-resolution basin-scale Regional Ocean Modeling System (ROMS) model. Results indicate that the western boundary current limb of the GS, upstream of Cape Hatteras, exhibit enhanced transport during low-NAO phases. However, further downstream of Cape Hatteras, after the GS separates from the coast, diminished GS transport is seen during low-NAO phases. The converse is true for high NAO phases for both segments of the GS system. Model results show the Deep Western Boundary Current (DWBC), the northern recirculation gyre and the southern recirculation gyre intensify (weaken) during the high (low) NAO periods. 相似文献
19.
We present a high-resolution historical analysis of the atmosphere over the North Atlantic for the period from January 1979 to December 2018. The dataset was obtained using the nonhydrostatic atmospheric model WRF-ARW version 3.8.1 and contains two experiments that differ in spatial resolution: 14 km (HiRes) and 77 km (LoRes). Except for the spatial resolution, the configuration remained identical in both experiments: 50 vertical sigma-levels (starting from ~12 m up to 50 hPa); ERA-Interim reanalysis was used as forcing and spectral nudging. The dataset for HiRes and LoRes experiments was named NAAD (North Atlantic Atmospheric Downscaling). Preliminary results of both HiRes and LoRes reveal good agreement with observations and the ERA-Interim, ERA5, and ASRv2 reanalyses. The NAAD dataset is available online at http://www.naad.ocean.ru and provides a variety of surface and upper-troposphere atmospheric variables with a time step of 3 h. 相似文献
20.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability. 相似文献
|