首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a brief survey of the works devoted to the investigation of the Atlantic Multidecadal Oscillation, i.e., of the quasiperiodic variations of sea-surface temperature in the North Atlantic with typical time scales of 50–100 yr. This oscillation is a manifestation of the natural variability in the ocean-atmosphere system. The characteristic scale of the Atlantic Multidecadal Oscillation is determined by the speed of the meridional oceanic circulation in the North Atlantic. The analyzed oscillation affects various climatic characteristics: air temperature, river discharge in the European and North-American regions, the number and intensity of tropical cyclones in the Atlantic Ocean, and the parameters of mid-latitude cyclones and anticyclones in the Atlantic-European region. The main mechanism by which the Atlantic Multidecadal Oscillation affects the climatic characteristics of the regions neighboring with the North Atlantic is the atmospheric response to the thermal anomalies in the ocean leading to a shift of the centers of atmospheric action and to the changes in the intensity and predominant directions of propagation of atmospheric cyclones and anticyclones. By using the results of long-term instrumental observations carried out in Eastern Europe and the data array of reconstructed temperature in the Alpine region, it is shown that the Atlantic Multidecadal Oscillation is responsible for a significant part of low-frequency variations of temperature in Europe. This fact confirms the potential predictability of the regional atmospheric manifestations of the Atlantic Multidecadal Oscillation on the decadal-scale. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 69–79, July–August, 2008.  相似文献   

2.
By using the NCEP/NCAR reanalysis data sets for 1951–2001, we study the characteristics of Pacific cyclones. It is shown that the northeast-southwest direction is predominant in the displacements of cyclones in the North Pacific. We study the variability of the field of surface atmospheric pressure in different phases of the Pacific decadal oscillation characterizing the temperature anomalies on the surface of the ocean in the region bounded by 20 and 60°N. It is shown that the decadal variations of the North Atlantic Oscillation supported by the large-scale anomalies of the Pacific decadal oscillation is the most important cause of natural decadal oscillations in the European region. We study and evaluate the regional response to the Pacific decadal oscillation by using, as an example, the analysis of variations of the discharge of European rivers. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 13–23, July–August, 2007.  相似文献   

3.
Rapid warming of Large Marine Ecosystems   总被引:4,自引:1,他引:3  
The need to understand local effects of global climate change is most urgent in the Large Marine Ecosystems (LMEs) since marine ecosystem-based management requires information on the LME scale. Reported here is a study of sea surface temperature (SST) change in the World Ocean LMEs in 1957–2006 that revealed strong regional variations in the rate of SST change. The rapid warming in 1982–2006 was confined to the Subarctic Gyre, European Seas, and East Asian Seas. These LMEs warmed at rates 2–4 times the global mean rate. The most rapid warming was observed in the land-locked or semi-enclosed European and East Asian Seas (Baltic Sea, North Sea, Black Sea, Japan Sea/East Sea, and East China Sea) and also over the Newfoundland–Labrador Shelf. The Indian Ocean LMEs’ warming was slow, while two major upwelling areas – California and Humboldt Currents – experienced a slight cooling. The Subarctic Gyre warming was likely caused by natural variability related to the North Atlantic Oscillation. The extremely rapid surface warming in the enclosed and semi-enclosed European and East Asian Seas surrounded by major industrial/population agglomerations may have resulted from the observed terrestrial warming directly affecting the adjacent coastal seas. Regions of freshwater influence in the European and East Asian Seas seem to play a special role in modulating and exacerbating global warming effects on the regional scale.  相似文献   

4.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   

5.
From late 1995 through early 2001, three major interannual climate events occurred in the tropical Pacific; the 1995–97 La Niña (LN), 1997–98 El Niño (EN), and 1998–2001 LN. We analyze atmospheric and upper oceanic anomalies in the northeast Pacific (NEP) during these events, and compare them to anomalies both elsewhere in the north and tropical Pacific, and to typical EN and LN anomaly patterns. The atmospheric and oceanic anomalies varied strongly on intraseasonal and interannual scales. During the 1995–97 LN and 1997–98 EN, the Northeast Pacific was dominated by negative SLP and cyclonic wind anomalies, and by upper ocean temperature and sea surface height (SSH) anomalies. The latter were positive along the North American west coast and in the NEP thermal anomaly pool (between Hawaii, Vancouver Island, and Baja California), and negative in the central north Pacific. This atmospheric/oceanic anomaly pattern is typical of EN. An eastward shift in the atmospheric teleconnection from east Asia created EN-like anomalies in the NEP during the 1995–97 LN, well before the 1997–98 EN had begun. The persistence of negative sea-level pressure (SLP) and cyclonic wind anomalies in the NEP during the 1997–98 EN intensified pre-existing upper oceanic anomalies. Atmospheric anomalies were shifted eastward during late 1996–early 1998, leading to a similar onshore shift of oceanic anomalies. This produced exceptionally strong positive upper ocean temperature and SSH anomalies along the west coast during the 1997–98 EN, and explains the unusual coastal occurrences of several species of large pelagic warm-water fishes. The growth and eastward shift of these pre-existing anomalies does not appear to have been linked to tropical Pacific EN anomalies until late 1997, when a clear atmospheric teleconnection between the two regions developed. Prior to this, remote atmospheric impacts on the NEP were primarily from east Asia. As the 1998–2001 LN developed, NEP anomalies began reversing toward the typical LN pattern. This led to predominantly negative SLP and cyclonic wind anomalies in the NEP, and upper ocean temperature and SSH anomalies that were mainly negative along the west coast and positive in the central north Pacific. The persistence of these anomalies into mid-2001, and a number of concurrent biological changes in the NEP, suggest that a decadal climate shift may have occurred in late 1998.During 1995–2001, NEP oceanic anomalies tracked the overlying atmospheric anomalies, as indicated by the maintenance of a characteristic spatial relationship between these anomalies. In particular, wind stress curl and SSH anomalies in the NEP maintained an inverse relationship that strengthened and shifted eastward toward the west coast during late 1996–early 1998. This consistent relationship indicates that anomalous Ekman transport driven by regional atmospheric forcing was an important contributor to temperature and SSH anomalies in the NEP and CCS during the 1997–98 EN. Other studies have shown that coastal propagations originating from the tropical Pacific also may have contributed to coastal NEP anomalies during this EN. Our results indicate that at least some of this coastal anomaly signal may have been generated by regional atmospheric forcing within the NEP.  相似文献   

6.
We introduce the Northern Oscillation Index (NOI), a new index of climate variability based on the difference in sea level pressure (SLP) anomalies at the North Pacific High (NPH) in the northeast Pacific (NEP) and near Darwin, Australia, in a climatologically low SLP region. These two locations are centers of action for the north Pacific Hadley–Walker atmospheric circulation. SLPs at these sites have a strong negative correlation that reflects their roles in this circulation. Global atmospheric circulation anomaly patterns indicate that the NEP is linked to the western tropical Pacific and southeast Asia via atmospheric wave trains associated with fluctuations in this circulation. Thus the NOI represents a wide range of tropical and extratropical climate events impacting the north Pacific on intraseasonal, interannual, and decadal scales. The NOI is roughly the north Pacific equivalent of the Southern Oscillation Index (SOI), but extends between the tropics and extratropics. Because the NOI is partially based in the NEP, it provides a more direct indication of the mechanisms by which global-scale climate events affect the north Pacific and North America.The NOI is dominated by interannual variations associated with El Niño and La Niña (EN/LN) events. Large positive (negative) index values are usually associated with LN (EN) and negative (positive) upper ocean temperature anomalies in the NEP, particularly along the North American west coast. The NOI and SOI are highly correlated, but are clearly different in several respects. EN/LN variations tend to be represented by larger swings in the NOI. Forty percent of the interannual moderate and strong interannual NOI events are seen by the SOI as events that are either weak or opposite in sign. The NOI appears to be a better index of environmental variability in the NEP than the SOI, and NPH SLP alone, suggesting the NOI is more effective at incorporating the influences of regional and remotely teleconnected climate processes.The NOI contains alternating decadal-scale periods dominated by positive and negative values, suggesting substantial climate shifts on a roughly 14-year ‘cycle’. The NOI was predominantly positive prior to 1965, during 1970–1976 and 1984–1991, and since 1998. Negative values predominated in 1965–1970, 1977–1983, and 1991–1998. In the NEP, interannual and decadal-scale negative NOI periods (e.g. EN events) are generally associated with weaker trade winds, weaker coastal upwelling-favorable winds, warmer upper ocean temperatures, lower Pacific Northwest salmon catch, higher Alaska salmon catch, and generally decreased macrozooplankton biomass off southern California. The opposite physical and biological patterns generally occur when the index is positive. Simultaneous correlations of the NOI with north Pacific upper ocean temperature anomalies are greatest during the boreal winter and spring. Lagged correlations of the winter and spring NOI with subsequent upper ocean temperatures are high for several seasons. The relationships between the NOI and atmospheric and physical and biological oceanic anomalies in the NEP indicate this index is a useful diagnostic of climate change in the NEP, and suggest mechanisms linking variations in the physical environment to marine resources on interannual to decadal climate scales. The NOI time series is available online at: http://www.pfeg.noaa.gov.  相似文献   

7.
The dynamics of the climate and surface hydrology of northern Eurasia under the conditions of global climate changes is studied using coupled models of the atmospheric and oceanic general circulation. Feedbacks are assessed and analyzed for some parameters of the atmosphere and surface hydrology. The role of the biosphere (including the surface air layer, the vegetation layer, soil, and the hydrosphere) in the dynamics of the climate of the 21st century is studied. The features of the dynamics of the northern Atlantic seas during the periods corresponding to different phases of the North Atlantic Oscillation index are studied.  相似文献   

8.
The copepod Acartia tonsa appeared in Europe in the first half of the 20th century and colonized progressively European seas and estuaries, possibly transferred from North Atlantic Coast of America. It had been reported in the polyhaline area of the Gironde estuary for a long time but was first recorded in the oligo-mesohaline area in 1983. Its abundance has been increasing significantly. High abundances of A. tonsa were reported since 1999, supplanting the abundances of its autochthonous congeneric species, Acartia bifilosa. This colonization was characterized by analyzing the mean seasonal variability: (1) for three 5-year periods corresponding to three different steps of A. tonsa appearance (1978–1982, A. tonsa was absent; 1988–1992, low abundances of the species; and 1999–2003, high abundances of A. tonsa) in the oligo-mesohaline area and (2) for three stations distributed along the salinity gradient during the recent period. The aim of this work was to define if this colonization was due to natural or anthropogenic forcing and to evaluate its possible impact on autochthonous zooplanktonic community.Both natural and anthropogenic forcings seem to explain the colonization of Acartia tonsa in the oligo-mesohaline area of the Gironde estuary. First records (1983–1988) could be due to marine water inputs caused by high values of the North Atlantic Oscillation index. The global warming which caused the increase of the summer warm period, the marinisation of the system and the local decrease of the turbidity should have been the key factors favoring the establishment of the species. Anthropogenic forcings as the establishment of the nuclear power plant which locally causes warmer conditions are also important factors explaining the differences of seasonal cycle observed between oligo-mesohaline area and other stations: the seasonal pattern of A. tonsa in the oligo-mesohaline area was indeed characterized by an autumnal peak of abundances which has been observed in other stations and in many North European estuaries, and by a second spring peak that had only been observed in Southern estuaries.The introduction of Acartia tonsa in the Gironde estuary significantly changed the seasonal pattern of autochthonous copepods, by limiting their seasonal abundances without affecting their long-term population stability. Finally, the successful colonization of A. tonsa had led to the spread of the seasonal zooplanktonic production which could have had an impact on fish and shrimp productions.  相似文献   

9.
At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant (p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant (p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic.  相似文献   

10.
Relations in year-to-year variability between wintertime Sea-Ice Concentrations (SICs) in the Okhotsk Sea and atmospheric anomalies consisting of zonal and meridional 1000-hPa wind speeds and 850-hPa air temperatures are studied using a singular value decomposition analysis. It is revealed that the late autumn (October–November) atmospheric conditions strongly influence sea-ice variability from the same season (late autumn) through late winter (February—March), in which sea-ice extent is at its maximum. The autumn atmospheric conditions for the positive sea-ice anomalies exhibit cold air temperature anomalies over the Okhotsk Sea and wind anomalies blowing into the Okhotsk Sea from Siberia. These atmospheric conditions yield anomalous ocean-to-atmosphere heat fluxes and cold sea surface temperature anomalies in the Okhotsk Sea. Hence, these results suggest that the atmospheric conditions affect the sea-ice through heat anomalies stored in sea-ice and oceanic fields. The late autumn atmosphere conditions are related to large 700-hPa geopotential height anomalies over the Bering Sea and northern Eurasia, which are related to a stationary Rossby wave propagation over the North Pacific and that from the North Atlantic to Eurasia, respectively. In addition, the late autumn atmospheric preconditioning also plays an important role in the decreasing trend in the Okhotsk sea-ice extent observed from 1980 to the mid-1990s. Based on the lagged sea-ice response to the late autumn atmosphere, a simple seasonal prediction scheme is proposed for the February–March sea-ice extent using four-month leading atmospheric conditions. This scheme explains 45% of the variance of the Okhotsk sea-ice extent.  相似文献   

11.
On the basis of reanalysis of the data of the European Center of Medium-Range Weather Forecasts for 1979–1993, we study the relationship between the interannual and intramonthly variability of the fields of surface temperature and pressure in the Atlantic-European region and the Southern Oscillation (SO). In spring, the SO is responsible for 25% of the variance of surface temperature for periods of 8–30 days in the east part of Europe and in the Mediterranean region. In this case, the zonal circulation over the North Atlantic is intensified, which manifests itself in the deepening of the Iceland Low and Azores High. For low indices of SO, 8–15-day temperature fluctuations are predominant over the Black-Sea region. At the same time, 3–4-week fluctuations are predominant over West Mediterranean. An important role in the formation of abnormal temperature conditions in the analyzed region is payed by the events of La Niño.  相似文献   

12.
The spatial structure of surface air temperature (SAT) anomalies in the extratropical latitudes of the Northern Hemisphere (NH) during the 20th century is studied from the data obtained over the period 1892–1999. The expansion of the mean (over the winter and summer periods) SAT anomalies into empirical orthogonal functions (EOFs) is used for analysis. It is shown that variations in the mean air temperature in the Arctic region (within the latitudes 60°–90°N) during both the winter and summer periods can be described with a high accuracy by two spatial orthogonal modes of variability. For the winter period, these are the EOF related to the leading mode of variability of large-scale atmospheric circulation in the NH, the North Atlantic Oscillation, and the spatially localized (in the Arctic) EOF, which describes the Arctic warming of the mid-20th century. The expansion coefficient of this EOF does not correlate with the indices of atmospheric circulation and is hypothetically related to variations in the area of the Arctic ice cover that are due to long-period variations in the influx of oceanic heat from the Atlantic. On the whole, a significantly weaker relation to the atmospheric circulation is characteristic of the summer period. The first leading variability mode describes a positive temperature trend of the past decades, which is hypothetically related to global warming, while the second leading EOF describes a long-period oscillation. On the whole, the results of analysis suggest a significant effect of natural climatic variability on air-temperature anomalies in the NH high latitudes and possible difficulties in isolating an anthropogenic component of climate changes.  相似文献   

13.
The present study reveals the fact that the relationship between the spring(April–May) North Atlantic Oscillation(NAO) and the following summer(June–September) tropical cyclone(TC) genesis frequency over the western North Pacific(WNP) during the period of 1950–2018 was not stationary. It is shown that the relationship between the two has experienced a pronounced interdecadal shift, being weak and insignificant before yet strong and statistically significant after the early 1980 s. Next we compare the spring NAO associated dynamic and thermodynamic conditions, sea surface temperature(SST) anomalies, and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018, so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection. During the latter epoch, when the spring NAO was positive,enhanced low-level vorticity, reduced vertical zonal wind shear, intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer, which is conducive to the genesis of WNP TCs. When the spring NAO is negative, the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP. The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation.During the period of 1996–2018, a remarkable eastward propagating wave-train occurred across the northern Eurasian continent, forced by the anomalous SST tri-pole in the North Atlantic. The East Asian jet flow became greatly intensified, and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation, corresponding to a positive spring NAO. During the former epoch, the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent, and the related atmospheric circulation anomalies were extremely weak, thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant.  相似文献   

14.
Concentrations of dissolved Ni, Cu, Zn, Cd and Pb were measured in water samples collected during a cruise with R.V Pelagia (29-6/14-7-1993) in the northern North Sea and N.E. Atlantic Ocean. At least six depths (0–90 m) were sampled with modified Go-Flo samplers from a rubber zodiac. In the study area, the first 25 m were well mixed and stratification occurred below this depth. The local bloom of Emiliania huxleyi hardly affected the trace metals concentration, except for some removal of Cd as seen from its correlation with nitrate. The mean dissolved concentrations were for Ni (3.66 nM), Cu (1.61 nM), Zn (4.5 nM), Cd (48 pM) and Pb (108 pM). These concentrations are among the lowest reported for the North Sea and are of similar magnitude to those found in the eastern North Atlantic at the same latitude. Zn was the only exception with values 10 times higher compared to those in the Atlantic Ocean, suggesting external inputs, mainly atmospheric and possibly from surrounding land masses. The observed ratio Zn:Cd in the North Sea and estuaries is in between the high ratio 600–900 for continental sources and the low ratio 5–10 for oceanic waters. Latter low ratio is consistent with the 21-fold stronger inorganic complexation of Cd in seawater which, in combination with the preferential biological uptake of Zn, may lead to the observed about hundredfold fractionation of Zn versus Cd in the marine system. Other processes may play a role but would need further investigation. The dissolved Pb values tend to be lower than found before in the North Sea, indicating decreasing inventories due to reduced anthropogenic emissions.  相似文献   

15.
By using archival monthly data for 100 yr, we analyze the statistical structure of time series characterizing the variability of the Azores High and Iceland Low. We show that there exists a long-term tendency towards approach of the centers of action of the atmosphere (CAA) in the North Atlantic and their strengthening. At the same time, quasiperiodic decadal intensification of the CAA is accompanied by an increase in the distance between them. In the spectra of sea-level pressure in the Azores High and Iceland Low, significant peaks for periods of 2–5 and 10 yr are strongly pronounced. Furthermore, oscillations with a period 50 yr are clearly seen. The main contribution to the interannual changes in the index of the North-Atlantic Oscillation (NAO) is made by pressure variability in the Iceland Low. Different ways of behavior are characteristic of the CAA for time scales of 2–7, 7–15, and more than 15 yr. Each of these variability intervals is analyzed separately. We established a significant correlation between the index of the Southern Oscillation (SO) and characteristics of the CAA of the North Atlantic only for time scales of 7–15 yr. It demonstrates that, as the SO index increases in autumn, the pressure at the center of the Azores High grows and the latitudinal distance between the Azores High and Iceland Low decreases, i.e., the zonal circulation in the North Atlantic becomes more intense. We also discuss possible mechanisms of the obtained statistical relations.  相似文献   

16.
《Ocean Modelling》2011,40(3-4):209-219
Meridional shifts of the Gulf Stream (GS) jet on interannual to decadal timescales and the corresponding oceanic changes around the GS are investigated using a near global eddy-resolving ocean model hindcast from 1960 to 2003. The simulated variability in the shifts of the GS jet axis shows good agreement with observations, and lags atmospheric fluctuations characterized by the North Atlantic Oscillation by about 2 years. This lagged response of the GS jet to the atmospheric variations is attributed to the westward propagation of the undulation of the jet axis from 45°W to 75°W, which has a wavelength of about 4000 km and a displacement of 0.5°. The propagation direction and phase speed of about 2.8 cm s−1 are consistent with the thin-jet theory. The shifts of the jet axis in the downstream region are likely induced by wind fluctuations through Ekman convergence over the central North Atlantic. Associated with the northward (southward) shift of the jet axis, sea surface temperature is warming (cooling) around and north of the jet, and the former warming has a deep and meridionally narrow subsurface structure, consistent with the northward shift of the jet. The meridional shifts of the jet accompany coherent meridional shifts of energetic eddy activity regions around the GS. Our numerical results suggest that the GS jet brings the atmospheric signals from the central to the western North Atlantic, and the resultant meridional shift of the jet induces the notable oceanic changes around the GS.  相似文献   

17.
The aim of the work is to check the hypothesis that quasiperiodic oscillations of meridional heat transport intensified by a positive feedback existing in the ocean–atmosphere system in subtropical regions is one of the principal factors governing the decadal variability of various hydrophysical fields in the North Atlantic. We use a simple three-box model of the North Atlantic with one lower and two upper boxes and meridional circulation for typical parameters of the ocean–atmosphere system. It is assumed that the decadal anomalies of sea-level pressure are proportional to the anomalies of sea-surface temperature. The deduced system of ordinary differential equations for the temperature of the upper two boxes with quadratic nonlinearity and the behavior of the solution in the vicinity of the stationary point are analyzed by using standard procedures for the investigation of linearized equations for small perturbations. It is shown that, for typical parameters of the ocean–atmosphere system, oscillating solutions for the sea-surface temperature with periods of 10–20yr can be realized even without taking salinity into account.  相似文献   

18.
A gridded monthly terrestrial precipitation from the Climatic Research Unit (CRU), University of East Anglia data set and the UK Met Office Northern Hemisphere mean sea level pressure data are used to investigate interdecadal changes in the relationships between precipitation variability over Europe and atmospheric circulation in the Atlantic–European sector during boreal spring and fall.
Singular value decomposition (SVD) analysis, performed for the climatic periods of strong/weak links to the North Atlantic Oscillation (NAO) during spring and fall, revealed considerable interdecadal changes both in the strength and the structure of the links between European precipitation and regional atmospheric circulation. During periods of strong links to the NAO, the leading SVD mode is characterized by the NAO-like meridional dipole in sea level pressure (SLP) fields and associated opposite precipitation variations over northern/southern Europe. When the links to the NAO are weak, the leading SVD mode is represented by the tripole pattern in SLP fields over the North Atlantic–European region, driving regional precipitation variability both in spring and fall. Further correlation analysis has shown that this mode is associated with the Scandinavian teleconnection pattern (SCA). Thus, for the considered seasons during periods of weak NAO influence, the SCA plays a role of major driver of the regional precipitation variability.  相似文献   

19.
Hydrographic time series from the northern North Atlantic throughout the 20th century show oscillations in temperature and salinity at more or less regular intervals. The Great Salinity Anomalies described during the 1970s [Dickson, R.R., Meincke, J., Malmberg, S.-A., Lee, A.J., 1988. The “Great Salinity Anomaly” in the North Atlantic, 1968-1982. Progress in Oceanography 20, 103-151.], during the 1980s [Belkin, I.M., Levitus, S., Antonov, J., Malmberg, S.-A., 1998. “Great Salinity Anomalies” in the North Atlantic. Progress in Oceanography 41, 1-68.], and during the 1990s [Belkin, I.M., 2004. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophysical Research Letters 31(8), L08306, doi:10.1029/2003GL019334.] have distinct amplitudes, and all three of them were interpreted as low salinity anomalies propagating downstream through the anti-clockwise circulation system of the northern North Atlantic Ocean. Further inspection of time series from the Northeast Atlantic and the Northwest Atlantic over the past century shows, however, several other distinct negative anomalies of lesser amplitudes. Additionally, a number of high salinity anomalies can be identified. The present paper analyses further the propagation of the negative and positive anomalies and links them together. It is shown that they have varying speeds of propagation, and that the varying speeds are correlated across the North Atlantic. We propose that varying volume fluxes in and out of the Arctic Basin is the causal mechanism behind the anomaly signals, and that the North Atlantic Oscillation (NAO) partly has influence on the flux variations described. Periods of large decadal-scale amplitudes of the NAO coincide with periods of large decadal-scale oscillation in the marine climate.  相似文献   

20.
The absorption of anthropogenic CO2 and atmospheric deposition of acidity can both contribute to the acidification of the global ocean. Rainfall pH measurements and chemical compositions monitored on the island of Bermuda since 1980, and a long-term seawater CO2 time-series (1983–2005) in the subtropical North Atlantic Ocean near Bermuda were used to evaluate the influence of acidic deposition on the acidification of oligotrophic waters of the North Atlantic Ocean and coastal waters of the coral reef ecosystem of Bermuda. Since the early 1980's, the average annual wet deposition of acidity at Bermuda was 15 ± 14 mmol m− 2 year− 1, while surface seawater pH decreased by 0.0017 ± 0.0001 pH units each year. The gradual acidification of subtropical gyre waters was primarily due to uptake of anthropogenic CO2. We estimate that direct atmospheric acid deposition contributed 2% to the acidification of surface waters in the subtropical North Atlantic Ocean, although this value likely represents an upper limit. Acidifying deposition had negligible influence on seawater CO2 chemistry of the Bermuda coral reef, with no evident impact on hard coral calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号