共查询到20条相似文献,搜索用时 15 毫秒
1.
Genesis of superimposed hypogene and supergene Fe orebodies in BIF at the Madoonga deposit, Yilgarn Craton, Western Australia 总被引:1,自引:0,他引:1
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore. 相似文献
2.
3.
Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda–Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite–martite–goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in ‘least-altered’ hematite–magnetite–metachert–BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe–Ca–Mg–Ni–Co–P–REE metasomatism that produced local Ni–REE-rich Fe–dolomite–magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle–ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni–Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite–hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)–Fe–dolomite–quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides, carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ~100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important ‘ground preparation’ for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene–supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide. 相似文献
4.
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:1深成—表生矿床;2表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。 相似文献
5.
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:①深成—表生矿床;②表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。 相似文献
6.
Platinum group element and nickel sulphide ore tenors of the Mount Keith nickel deposit, Yilgarn Craton, Australia 总被引:1,自引:0,他引:1
A set of platinum group element (PGE) analyses of about 120 samples from a 250-m continuous drill core through the Mount Keith komatiite-hosted nickel orebody, combined with Ni, Cu, Co, S, and major elements, reveals a complex trend of covariance between the original cumulus components of a thick sequence of nearly pure olivine–sulphide liquid adcumulates. The intersection is divided into informal chemostratigraphic zones, defined primarily by combinations of fine-scale cyclicity in original olivine composition, defined by Mg#, and sulphide composition, defined by Pt/S and Ni/S. Contents of Ni and PGE in 100% sulphides (tenors) were determined from linear regressions of the Ni–S and PGE–S covariance for each zone. Inferred olivine compositions range from about Fo92 to Fo94.6 and show a broad decrease from bottom to top of the sequence complicated by numerous reversals, revealing crystallisation in an open conduit system. Ni and PGE tenors of Mount Keith sulphide ores have typical values similar to the type I deposits of the Kambalda Dome. Mobility of S, at least on the scale of 2-m sample composites, is evidently relatively minor. Tenors for the various zones range 12–22% Ni, 370–1540?ppb Pt, 970–3670?ppb Pd, 100–460?ppb Ir, 170–460?ppb Rh, and 710–1260?ppb Ru. Pt, Pd, and Rh tenors are very strongly correlated, but the iridium group of platinum group elements (IPGEs; Ir and Ru) less so. Tenor variations are predominantly controlled by variations in magma/sulphide ratio R (100–350), with a minor component of variance from equilibrium crystallisation trends in the parent magma. PGE depletion in the silicate melt due to sulphide liquid extraction is limited by entrainment of sulphide liquid droplets and continuous equilibration with the transporting silicate magma. Ratios of the PGEs to one another are similar to those in the host komatiite magma, with the exception of Pt, which is systematically depleted in ores, relative to Rh and Pd and relative to host magma, by a consistent factor of about 2 to 2.5. This anomalous Pt depletion relative to PGE element ratios in unmineralized komatiitic rocks matches that observed in bulk compositions of many komatiite-hosted orebodies. The highly consistent nature of this depletion, and particularly the very strong correlation between Pt, Pd, and Rh in the Mount Keith deposit, argue that this depletion is a primary magmatic signal and not an artefact of alteration. Differential diffusion rates between Pt and the other PGEs, giving rise to a low effective partition coefficient for Pt into sulphide liquid, is advanced as a possible but not definitive explanation. 相似文献
7.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding. 相似文献
8.
Banded iron-formations are main resources of global iron ore in which high-grade ore is mainly composed of martite–goethite and hematite. They are also the major resource of iron ore in China, mainly distributing in Liaoning and Hebei Province. In China, the iron ore with Fe greater than 50% is classified as high-grade iron ore. The high-grade iron ore mainly consists of magnetite and displays its unique characteristics. Gongchangling iron deposit is one typical BIF-iron deposit which contains 150 Mt of high-grade iron ore in China. The high-grade magnetite ore bodies mainly occur around magnetite quartzite, faults and the cores of folds and show positive relation to the development of the “altered rocks” in this deposit. This research shows that high-grade magnetite comes from magnetite quartzite and they are both formed, with little or no addition of aluminum-containing detrital material, by marine chemical deposition in reduced environment and they are closely related to seafloor hydrothermal activity.Muddy–silty rocks are original rocks of “altered rocks”, of which the primitive mantle normalized REE pattern, except Eu, is consistent with that of iron ore, reflecting that their formation is related to the formation of high-grade magnetite ore. Therefore, the formation mechanism of high-grade iron ore is proposed as following: the regional metamorphism provides storage space for the formation of high-grade magnetite ore and required temperature and pressure conditions for the mineral transformation; the regional metamorphic hydrothermal fluid leaches FeO out of magnetite quartzite when it passes by; and the FeO that leached out moves near faults or cores of folds together with the metamorphic hydrothermal fluid and aluminum-containing rocks, of which the original rocks are muddy–silty; in the formation of high-grade iron ore, aluminum-containing rock appears in the intervals of sedimentation of iron-containing rock series and consumes the silicon leached out of magnetite quartzite and forms garnet, chlorite, and biotite. 相似文献
9.
Y.-H. Sung C. L. Ciobanu A. Pring J. Brügger W. Skinner N. J. Cook M. Nugus 《Mineralogy and Petrology》2007,90(3-4):249-270
Summary The Cu–Fe–Au–Mo (W) deposits in southeastern Hubei are an important component of the Middle–Lower Yangtze River metallogenic
belt. Molybdenite from the Fengshandong Cu- (Mo), Ruanjiawan W–Cu- (Mo), Qianjiawan Cu–Au, Tongshankou Cu–Mo and Tonglüshan
Cu- (Fe) deposits yielded Re–Os ages of 144.0 ± 2.1 Ma, 143.6 ± 1.7 Ma, 137.7 ± 1.7 Ma, 142.3 ± 1.8–143.7 ± 1.8 Ma and 137.8
± 1.7–138.1 ± 1.8 Ma, respectively. Phlogopite from the Tieshan Fe- (Cu) deposit yielded an Ar–Ar age of 140.9 ± 1.2 Ma. These
data and other published isotopic ages (Re–Os molybdenite and Ar–Ar mica ages) for the Cu–Fe–Au–Mo (W) deposits in the Middle–Lower
Yangtze River metallogenic belt show that Cu–Fe–Au–Mo (W) mineralisation in the Tongling, Anqing, Jiurui and Edong ore districts
developed in a narrow time span between 135.5 and 144.9 Ma, reflecting an important regional metallogenic event. An integrated
study of available petrological and geochronological data, together with relationships to magmatism and the regional geodynamic
framework, indicate that the Cu–Fe–Au–Mo (W) mineralisation in the Middle–Lower Yangtze River belt occurred during a regime
of lithospheric extension. This extension is probably related to Late Mesozoic processes of lower crustal delamination and
lithospheric thinning in East China. 相似文献
10.
Low temperature Phanerozoic history of the Northern Yilgarn Craton, Western Australia 总被引:1,自引:0,他引:1
The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time–temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40–50 mW m−2. If the present day geothermal gradient of 18 ± 2 °C km−1 is representative of average Phanerozoic gradients, then this implies a minimum of 50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U–Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup. 相似文献
11.
The Jupiter gold deposit in the northeastern Eastern Goldfields Province of the Yilgarn Craton of Western Australia is hosted
in greenschist facies metamorphosed tholeiitic basalt, quartz–alkali-feldspar syenite, and quartz–feldspar porphyry. Syenite
intrudes basalt as irregularly shaped dykes which radiate from a larger stock, whereas at least three E–W and NE–SW striking
quartz–feldspar porphyries intrude both syenite and basalt. Brittle–ductile shear zones are shallow-dipping, NW to NE striking,
or are steep-dipping to the south and west. Quartz ± carbonate veins that host gold at Jupiter occur in all lithologies and
are divided into: (1) veins that are restricted to the shear zones, (2) discrete veins that are subparallel to shear zone-hosted
veins, and (3) stockwork veins that form a network of randomly oriented microfractures in syenite wallrock proximal to shallow-dipping
shear zones. The gold-bearing veins comprise mainly quartz, calcite, ankerite, and albite, with minor sericite, pyrite, chalcopyrite,
galena, sphalerite, molybdenite, telluride minerals, and gold. Proximal hydrothermal alteration zones to the mineralised veins
comprise quartz, calcite, ankerite, albite, and sericite. High gold grades (>2 g/t Au) occur mainly in syenite and in the
hanging walls to shallow-dipping shear zones in syenite where there is a greater density of mineralised stockwork veins. The
Jupiter deposit has structural and hydrothermal alteration styles that are similar to both granitoid-hosted, but post-magmatic
Archaean lode-gold deposits in the Yilgarn Craton and intrusion-related, syn-magmatic, syenite-hosted gold deposits in the
Superior Province of Canada. Based on field observations and petrologic data, the Jupiter deposit is considered to be a post-magmatic
Archaean lode-gold deposit rather than a syn-intrusion deposit.
Received: 5 January 1999 / Accepted: 24 December 1999 相似文献
12.
C.A. BOULTER 《Geology Today》1986,2(4):106-111
The Pilbara is an important region for the study of early Earth history, primarily because it contains large areas of volcanics and sediments, as old as 3550 million years, that are commonly extremely well preserved as a result of an exceptionally heterogeneous tectonic overprint during cratonisation. This latter event was completed by 2800 million years ago and hence much of the cover sequence up to the classic Hamersley banded iron formation is Archean in age. 相似文献
13.
Richard J. Squire Charlotte M. Allen Ray A.F. Cas Ian H. Campbell Richard S. Blewett Alexander A. Nemchin 《Precambrian Research》2010
The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world. 相似文献
14.
H. J. Dalstra J. R. Ridley E. J. M. Bloem D. I. Groves 《Australian Journal of Earth Sciences》2013,60(5):765-784
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region. 相似文献
15.
A new structural evolution consisting of both extensional and contractional events has been defined for the St Ives Goldfield in the south-central Kalgoorlie Terrane of the eastern Yilgarn Craton in Western Australia. These events shaped the development of the fault architecture, which controlled the location of the regional anticlines, the magmatic centres, and the deposition of the Archaean greenstone successions. The fundamental grain of the St Ives Goldfield is north-northwest-trending. This trend is marked by faults which developed during D1 extension, which was oriented east-northeast–west-southwest. Across these faults we map major stratigraphic changes in the thickness and composition of units, especially of the previously undivided Black Flag Group volcaniclastic rocks. The centre of the St Ives Goldfield is dominated by the Kambalda Anticline. This north-northwest-trending regional fold was likely established early during the D1 extensional history, and was fully established during subsequent east-northeast-oriented D2 contraction. The regional anticline is an important architectural element because (1) magmatism and gold mineralising fluids were focussed into this domed region, and (2) deformation was partitioned across the limbs and crest of this structure. The D3 event involved regional uplift and extension, resulting in the formation of late basins (Merougil Conglomerate locally) and the emplacement of granitoids sourced from a metasomatised mantle wedge (Mafic-type porphyries). The most significant gold event in terms of endowment occurred during D4b sinistral strike-slip shearing and associated thrusting (e.g., Tramways and Republican thrusts). These thrusts were previously interpreted as the first contractional structures to deform the area (‘D1’), but are here reinterpreted as relatively late (D4b). In this D4b event, the north-northwest-trending faults underwent sinistral strike-slip shearing and were linked across the Kambalda Anticline by accommodation structures represented by generally east- to east-northeast-trending thrusts. Reactivation of D1 transfer structures may have influenced the location of these later accommodation structures. Late-stage mineralisation during D5 was the result of dextral strike-slip brittle shearing. 相似文献
16.
17.
A series of linked extensional detachments, transfer faults, and sediment- and volcanic-filled half-grabens that pre-date regional folding are described in the Late Archaean Margaret anticline, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Coeval structures and rock units include layer-parallel extensional detachments, transfer faults (high-angle rotational faults rooted in the detachments and linking layer-parallel shear zones with varying amounts of extension); felsic intrusions, either as granitoids emplaced in or below the detachments, or as fine-grained intrusive bodies emplaced above the detachments and controlled by the high-angle faults; and half-grabens controlled by the high-angle faults and filled with clastic sedimentary and volcanic rocks. At least 1500 m of section is excised across the detachments. The detachments and high-angle faults are folded by the east-northeast regional compression that formed the Margaret anticline. Extensional deformation in the Margaret anticline is correlated with the regionally recognised felsic magmatism and associated volcanic and volcaniclastic basin fill dated at approximately 2685–2670 Ma across the Eastern Goldfields Province. This suggests the extensional event was province-wide and post-dated initial greenstone deposition (at around 2705 Ma) but pre-dated regional compressive deformation. We suggest the extension is the result of a thermal anomaly in the crust, generated by the insulating effect of a thick pile (of the order of 10 km or greater) of mafic and ultramafic volcanic rocks on precursor Archaean felsic crust. The thermal anomaly has generated renewed production of felsic and mafic volcanic rocks, coeval with uplift and extension in the upper crust. 相似文献
18.
World-class mineral systems, such as those found in the Archaean eastern Yilgarn Craton, are the product of enormous energy and mass-flux systems driven by lithospheric-scale processes. These processes can create big footprints or signatures in the lithosphere, which can be observed at a range of scales and via a variety of methods: including geophysics, isotopes, tectonostratigraphy and geochemistry. We use these datasets to describe both the architecture (structure) of world-class gold systems of the Yilgarn Craton and the signatures of their formation. By applying an understanding of the most critical elements of the process, and their signatures, new areas, especially undercover, may be targeted more predictably than before. 相似文献
19.
A. Porwal I. González-Álvarez V. Markwitz T.C. McCuaig A. Mamuse 《Ore Geology Reviews》2010,38(3):184-196
Bayesian weight-of-evidence and logistic regression models are implemented in a GIS environment for regional-scale prospectivity modeling of greenstone belts in the Yilgarn Craton, Western Australia, for magmatic nickel sulfide deposits. The input variables for the models consisted of derivative GIS layers that were used as proxies for mappable exploration criteria for magmatic nickel sulfide deposits in the Yilgarn. About 70% of the 165 known deposits of the craton were used to train the models; the remaining 30% was used to validate the models and, therefore, had to be treated as if they had not been discovered. The weights-of-evidence and logistic regression models, respectively, classify 71.4% and 81.6% validation deposits in prospective zones that occupy about 9% of the total area occupied by the greenstone belts in the craton. The superior performance of the logistic regression model is attributed to its capability to accommodate conditional dependencies amongst the input predictor maps, and provide less biased estimates of prospectivity. 相似文献
20.
The Laverton region, located in the eastern Yilgarn Craton (EYC) Western Australia, is second only to the Kalgoorlie region for gold endowment. The integration of high-density, potential-field data, regional- and camp-scale seismic reflection data, regional- and mine-scale structural analysis, and geochronologically-constrained stratigraphy, provided new insights into the 4D architecture and tectonic evolution of Laverton region. 相似文献