首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar hard X-ray bursts (>10 keV) seem to show a centre-to-limb variation, while softer X-ray bursts show no directivity. This effect of hard X-ray bursts may be due to the directivity of the emission itself. As the cause of the directivity, two possibilities are suggested. One is the inverse Compton effect and the other is the bremsstrahlung from anisotropic electrons.  相似文献   

2.
Belinda Lipa 《Solar physics》1978,57(1):191-204
We have analyzed the hard X-ray emission from 28 large solar events, searching for pulsations in intensity profiles. Periodicity occurred in 26 events, usually soon after the onset, with periods in the range 10–100 s. Pulsations occurring at common frequencies in different energy bands are observed to be closely in phase. Periodic behavior in hard X-ray emission is related to that at microwave and decametric wavelength. We discuss our observations briefly in terms of two models: that of McClean et al. (1971), applied to X-ray emission, and that of Brown and Hoyng (1975). As periodicity is normal in extended hard X-ray bursts and occurs through a broad energy band, it is probably directly related to a principal flare acceleration mechanism. Our observations constrain possible mechanisms of flare acceleration and physical properties of the acceleration region.This work began when the author was at the Institute for Plasma Research, Stanford University.  相似文献   

3.
C. De Jager 《Solar physics》1967,2(3):347-350
Observationally solar X bursts fall into three different categories : soft X bursts (E < 10 keV), deka-keV bursts (10–150 keV), and very hard X bursts or deci-MeV bursts (200–1000 keV). The first kind is quasi-thermal, the last kind is non-thermal. The real existence of the third kind of burst looks probable but has not yet been proved by direct observations. The difference between deci-MeV and deka-keV bursts may mainly be a matter of geometry of the emitting plasma.  相似文献   

4.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc 2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate.  相似文献   

5.
《Chinese Astronomy》1980,4(3):265-272
This article puts forward a new method for the theoretical analysis of the X-radiation spectrum of impulsive hard X-ray bursts. It points out that the electron density energy state function must obey the fundamental kinetic equation. In the case of several model source functions, the electron density energy spectra are deduced. This can serve as a basis for an analysis of the spectrum of X-radiaiton in impulsive hard X-ray bursts. The article also makes a preliminary discussion of these energy state functions which help to explain the phenomena of softening of the X-radiation spectrum.  相似文献   

6.
We compared the microwave bursts with short timescale fine structure observed at 2.84 GHZ at Beijing Astronomical Observatory with the hard X-ry bursts (HXB) observed by the YOHKOH satellite during the period 1991 Oct–1992 Dec, and found that of the 20 microwave events, 12 had HXB counterparts. For the typical event of 1992-06-07, we analyzed the common quasi-period oscillations on the order of 102 s and calculated the parameters of the source region, together with a brief discussion.  相似文献   

7.
During the 21st solar activity cycle the HXRBS aboard SMM satellite and the HXM on HINOTORI spacecraft detected several thousand hard X-ray solar flares. Studies of the temporal properties of these events had revealed hundreds of examples of fast spikes with durations of less than 1 sec. We analysed part of these observations and found that they have four common characteristics. Among these characteristics, quasi-periodic oscillations led us to believe the possibility of oscillations existing in the corona. We have studied the characteristics of the oscillations and derived their periods. The conditions of trapping the oscillations are also discussed.  相似文献   

8.
Models of solar hard X-ray bursts are considered in which non-thermal electrons are impulsively injected into a coronal magnetic trap. Recognising that the ends of the trap are likely to be rooted in the photosphere and that the density of the ambient atmosphere may thus be highly non-uniform along the field lines, it is shown that the X-ray spectra will initially soften with time, due to collisions, when this non-uniformity is strong enough. This removes a well-known discrepancy in models with uniform density.It is shown also that non-uniformity steepens the electron spectrum required to produce a given observed X-ray spectrum. In consequence the total non-thermal electron energy involved in a given burst is greater than that previously inferred from impulsive injection models.  相似文献   

9.
During the impulsive phase of many solar flares, blueshifted emission wings are observed on the soft X-ray spectral lines of highly excited ions that are produced in the flare plasma. This emission has been commonly interpreted as chromospheric evaporation of material from the footpoints of coronal loops by non-thermal particle beams, although the question of whether the bulk of the energy is carried by electrons or ions (protons) has been the subject of much debate. The precise temporal relationship between the onsets of the blueshifted emission and the hard X-ray bursts is particularly important in resolving the mechanism of energy transfer to the hot plasma in the impulsive phase. A sample of flares observed with the Bragg Crystal Spectrometer (BCS) onYohkoh has been analysed for blueshifted emission and the results compared with hard X-ray light turves obtained with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO). In some flares, the blueshifted emission precedes the onset of the hard X-rays by up to 100 s. There is no evidence for a temporal correlation between the maximum energy input to the hard X-ray bursts and the maximum blueshifted intensity. These results lend support to those models favouring protons as the dominant energy carrier in the impulsive phase of flares and are inconsistent with the hypothesis that the bulk of the energy resides in electron beatos, although some other energy input, while unlikely, cannot be completely eliminated.  相似文献   

10.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

11.
A simple trap model of solar hard X-ray bursts is discussed in which nonthermal electrons trapped in a magnetic bottle precipitate into the lower chromosphere through the resonant scattering by whistlers. In such a model, the X-ray spectra produced from trapped and precipitating electrons have different spectral shape, and both of the spectra will initially soften with time, provided the precipitation dominates over collisional degradation.  相似文献   

12.
A comparison is made between the flux-versus-time profile in the EUV band and the thick target electron flux profile as inferred from hard X-rays for a number of moderately large solar flares. This complements Kane and Donnelly's (1971) study of small flares. The hard X-ray data are from ESRO TD-1A and the EUV inferred from SFD observations.Use of a 2 minimising method shows that the best overall fit between the profile fine structures obtains for synchronism to 5 s which is within the timing accuracy. This suggests that neither conduction nor convection is fast enough as the primary mechanism of energy transport into the EUV flare and rather favours heating by the electrons themselves or by some MHD wave process much faster than acoustic waves.The electron power deposited, for a thick target model, is however far greater than the EUV luminosity for any reasonable assumptions about the area and depth over which EUV is emitted. This means that either most of the power deposited is conducted away to the optical flare or that only a fraction 1–10% of the X-ray emitting electrons are injected downwards. Recent work on H flare heating strongly favours the latter alternative - i.e. that electrons are mostly confined in the corona.  相似文献   

13.
The observed correlations between X-ray and type III radio emissions from solar bursts are described by means of a bivariate distribution function. Procedures for determining the form of this distribution are described using a sample of data analyzed by Kane (1981). With the help of this distribution a model is constructed to explain the correlation between the X-ray spectral index and the ratio of X-ray to radio intensities. Implications of the model are discussed.  相似文献   

14.
In the present investigation, we have carried out power spectrum analysis of sunspot number and great hard x-ray (GHXR) burst (equal to or greater than 10,000 counts per second) for a period of about 6 years. The GHXR bursts show a periodicity of about 155 days. On the other hand, sunspot numbers do not show any periodicity. The GHXR burst periodicity confirms the existence of a 152–158 days periodicity in the occurrence of solar energetic events. Further, the GHXR bursts are showing periodicity independently indicating that the GHXR bursts are a separate class of X-ray flares.  相似文献   

15.
Hard X-ray (?100 keV) time histories of solar flares which occurred on 1978 December 4 and 1979 February 18 are presented. The first flare was observed by 3 identical instruments from near-earth orbit (Prognoz 7) and interplanetary space (Venera 11 and 12). Fine time structure is present down to the 55 ms level for the e-folding rise and fall times. These data may be used to localize the emission region by the method of arrival time analysis.  相似文献   

16.
The dynamic spectral characteristics of the thermal model for solar hard X-ray bursts recently proposed by Brown et al. (1979) (BMS) are investigated. It is pointed out that this model, in which a single source is heated impulsively and cooled by anomalous conduction across an ion-acoustic turbulent thermal front, predicts that the total source emission measure should rise as the temperature falls. This prediction, which is common to all conductively cooled single-source models, is contrary to observations of many simple spike bursts. It is proposed, therefore, that the hard X-ray source may consist of a distribution of many small impulsively-heated kernels, each cooled by anomalous conduction, with lifetimes shorter than current burst data temporal resolution. In this case the dynamic spectra of bursts are governed by the dynamic evolution of the kernel production process, such as magnetic-field dissipation in the tearing mode. An integral equation is formulated, the solution of which yields information on this kernel production process, from dynamic burst spectra, for any kernel model.With a BMS-type kernel model in one-dimensional form, the derived instantaneous spectra are limited in hardness to spectral indices 4 for any kernel production process, due to the nature of the conductive cooling. Ion-acoustic conductive cooling in three dimensions, however, increases the limiting spectral hardness to 3. Other forms of anomalous conduction yield similar results but could permit bursts as hard as 2, consistent with the hardest observed.The contribution to the X-ray spectrum from the escaping tail of high-energy kernel electrons in the BMS model is calculated in various limits. If this tail dissipates purely collisionally, for example, its thick-target bremsstrahlung can significantly modify the kernel spectrum at the high-energy end. The energetics of this dynamic dissipation model for thermal hard X-ray bursts also are briefly discussed.Now at: Department of Mathematics, University of Waikato, Hamilton, New Zealand.  相似文献   

17.
V. K. Verma 《Solar physics》1985,97(2):381-385
It is found that 20% solar surges are associated with microwave bursts (2800–15000 MHz) and also that solar surges are not associated with hard X-ray bursts (17–40 keV).  相似文献   

18.
Multi-spacecraft observations in the interplanetary space are used to build up a picture of the distribution of solar wind velocities in heliographic latitude and longitude. Analyses are made for the solar wind data obtained by Sakigake, Suisei, IMP-8 and Giotto between late 1985 and early 1987. Until Janaury 1986, high-speed streams were extended across the equator from the high latitudes of the heliosphere. After March 1986, high-speed streams were rarely seen on the equator. Although there remained a slight wavy pattern in latitude-longitude structure, low-speed streams were basically ranged along the equator. After January 1987, the amplitude of this wavy pattern was further diminished and low-speed regions were completely aligned to the equator.  相似文献   

19.
Due to the relatively high stream densities involved, collective interactions with the ambient plasma are likely to be important for the electrons producing solar hard X-ray bursts. In thick- and thin-target bremsstrahlung models the most relevant process is limitation of the invoked electron beams by ion sound wave generation in the neutralizing reverse current established in the atmosphere. For the thick target model it is shown that typical electron fluxes are near the maximum permitted by stability of the reverse current so that ion-sound wave generation may be the process which limits the electron injection rate. On the other hand the chromospheric reverse current is sufficient to supply the large total number of electrons which have to be accelerated in the corona. For the thin target the low density of the corona severely limits the possible reverse current so that the maximum upward flux of fast electrons is probably much too small to explain X-ray bursts but compatible with observations of interplanetary electrons.A distinct class of model postulates a small number of electrons confined by resonant scattering in a dense coronal slab surrounding a current sheet with continuous stochastic acceleration offsetting collisional losses. The energetic aspects of such a situation described by Hoyng (1975) are developed here by addition of equations describing the slab geometry in terms of electron diffusion by whistler scattering and of the collisional damping of the accelerating Langmuir waves. Solution of these equations results in values for the fieldB(70–350 G), densityn 0(2–5 × 1012 cm –3), slab dimensions (1018 km2 × 0.3–3 km) and relative Langmuir energy density (10–3 – 10–2) required to produce the observed range of bursts. It is pointed out, however, that there may be no real gain in electron number requirements since the fast electrons in the emitting slab would be constantly swept out along with the frozen-in plasma as dissipation proceeds so that a large total number of electrons is still required. It could in fact be that just such a coronal region is the injection mechanism for the thick-target model.On leave from Department of Astronomy, University of Glasgow, Scotland.  相似文献   

20.
Takakura  T.  Degaonkar  S. S.  Ohki  K.  Kosugi  T.  Enome  S. 《Solar physics》1983,83(2):379-384
New solar wind data from Helios-2 are used to study, in a statistical fashion, the relation between proton number density n, flow speed u and heliocentric distance r. It is shown that the average of nu 2 r 2 does not depend on flow speed nor on distance, verifying the previously established invariance of momentum flux density (mnu2) carried by the solar wind. Averages of mnu2 from different spacecraft do not show correlation with the solar cycle. Rather, the close agreement (to within 1.8%) of values from Helios-1 and Helios-2 suggests that the momentum flux density carried by the solar wind may be also constant during the solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号